在激波捕捉求解器计算的可压缩无黏流场基础上,提出了一种探测并识别二维激波干扰模式的新算法,从3个层面详细介绍了该算法的实施流程。首先,采用基于当地流场参数设计的传统激波探测方法,辨识出激波附近的一系列网格单元;其次,通过经典的K-means聚类算法将这些激波单元划分成许多簇,并根据簇的相邻信息定义每个簇的类别;最后,设定相关准则对某些紧邻的簇进行合并,进而确定各个激波干扰点的位置,记录各条激波分支所对应的簇,采用Bézier曲线拟合算法分别对其聚类中心进行拟合以获取更加光滑的激波线。数值试验表明,该算法不受网格类型的限制,不仅可以保证最终拟合的激波线具有较高的位置精度,还可以清晰地识别出流场中多激波干扰的模式,同时对分析非定常流场中激波的运动与演化过程也提供了一种有效的可视化手段。
Based on compressible and inviscid flow solutions computed by shock-capturing solvers, a new technique for detecting and recognizing two-dimensional shock wave interaction patterns is proposed. The implementation process of this algorithm is illustrated from three aspects. Firstly, using a traditional shock wave detection approach based on local flow parameters, a series of grid-cells near the shock waves are identified. Next, the shock cells are divided into various clusters by means of a classical K-means clustering algorithm, and the category of each cluster is defined according to its adjacent information. Finally, a criterion is introduced to merge related adjacent clusters and to further determine the locations of shock interaction points. The clusters contained in each shock wave are recorded, and then all the fitting shock lines can be obtained by the Bézier curve algorithm. Numerical experiments show that this newly developed technique can be used in different types of mesh, The new technique produces fitted shock lines with high quality and positional accuracy. Meanwhile, the multiple shock wave interaction patterns are clearly recognized and provide a good visualization method for analyzing the motion and evolution of shock waves in complex, unsteady flow.
[1] BUNING P, STEGER J. Graphics and flow visualization in computational fluid dynamics[C]//7th Computational Physics Conference, 1985:1507.
[2] DARMOFAL D L. Hierarchal visualization of three-dimensional vortical flow calculations[R]. Cambridge:Massachusetts Institute of Technology Cambridge Computational Fluid Dynamics Lab, 1991:42-43.
[3] LIOU S P, SINGH A, MEHLIG S, et al. An image analysis based approach to shock identification in CFD[C]//33rd Aerospace Sciences Meeting and Exhibit, 1995:117.
[4] LOVELY D, HAIMES R. Shock detection from computational fluid dynamics results[C]//14th Computational Fluid Dynamics Conference, 1999:3285.
[5] PAGENDARM H G, SEITZ B. An algorithm for detection and visualization of discontinuities in scientific data fields applied to flow data with shock waves[J]. Scientific Visualization:Advanced Software Techniques, 1993:161-177.
[6] MA K L, VAN ROSENDALE J, VERMEER W. 3D shock wave visualization on unstructured grids[C]//Proceedings of 1996 Symposium on Volume Visualization, 1996:87-94.
[7] VAN ROSENDALE J. Floating shock fitting via Lagrangian adaptive meshes[R]. 1994:89-94.
[8] KANAMORI M, SUZUKI K. Shock wave detection in two-dimensional flow based on the theory of characteristics from CFD data[J]. Journal of Computational Physics, 2011, 230(8):3085-3092.
[9] KANAMORI M, SUZUKI K. Three-dimensional shock wave detection based on the theory of characteristics[J]. AIAA Journal, 2013, 51(9):2126-2132.
[10] AKHLAGHI H, DALIRI A, SOLTANI M R. Shock-wave-detection technique for high-speed rarefied-gas flows[J]. AIAA Journal, 2017,55(11):3747-3756.
[11] MONFORT M, LUCIANI T, KOMPERDA J, et al. A deep learning approach to identifying shock locations in turbulent combustion tensor fields[M]//Modeling, Analysis, and Visualization of Anisotropy, 2017:375-392.
[12] LIU Y, LU Y T, WANG Y Q, et al. A CNN-based shock detection method in flow visualization[J]. Computers & Fluids, 2019, 184:1-9.
[13] 马千里, 李思昆, 曾亮. 基于两级采样的非结构化网格流场多激波特征可视化方法[J]. 计算机研究与发展, 2012, 49(7):1450-1459. MA Q L, LI S K, ZENG L. Visualization of multi-shock features for unstructured-grid flows based on two-level sampling[J]. Journal of Computer Research and Development, 2012, 49(7):1450-1459(in Chinese).
[14] WU Z N, XU Y Z, WANG W B, et al. Review of shock wave detection method in CFD post-processing[J]. Chinese Journal of Aeronautics, 2013, 26(3):501-513.
[15] PACIORRI R, BONFIGLIOLI A. Recognition of shock-wave patterns from shock-capturing solutions[C]//Computational Modelling of Objects Represented in Images, 2012:91-96.
[16] PACIORRI R, BONFIGLIOLI A. A shock-fitting technique for 2D unstructured grids[J]. Computers & Fluids, 2009, 38(3):715-726.
[17] 刘君, 邹东阳, 董海波. 动态间断装配法模拟斜激波壁面反射[J]. 航空学报, 2016, 37(3):836-846. LIU J, ZOU D Y, DONG H B. A moving discontinuity fitting technique to simulate shock waves impinged on a straight wall[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(3):836-846(in Chinese).
[18] ZOU D Y, XU C G, DONG H B, et al. A shock-fitting technique for cell-centered finite volume methods on unstructured dynamic meshes[J]. Journal of Computational Physics, 2017, 345:866-882.
[19] CHANG S Y, BAI X Z, ZOU D Y, et al. An adaptive discontinuity fitting technique on unstructured dynamic grids[J]. Shock Waves, 2019, 29(8):1103-1115.
[20] 吴夙慧, 成颖, 郑彦宁, 等. K-means算法研究综述[J]. 数据分析与知识发现, 2011, 27(5):28-35. WU S H, CHENG Y, ZHENG Y N, et al. Survey on K-means algorithm[J]. New Technology of Library and Information Service, 2011, 27(5):28-35(in Chinese).
[21] MACQUEEN J. Some methods for classification and analysis of multivariate observations[C]//Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, 1967, 1(14):281-297.
[22] BÉZIER P E. Numerical control-mathematics and applications[M]. 1972:256.
[23] 刘君, 徐春光, 白晓征. 有限体积法和非结构动网格[M]. 北京:科学出版社, 2016:42-72. LIU J, XU C G, BAI X Z. Finite volume methods and unstructured dynamic grids technique[M]. Beijing:Science Press, 2016:42-72(in Chinese).
[24] WOODWARD P, COLELLA P. The numerical simulation of two-dimensional fluid flow with strong shocks[J]. Journal of Computational Physics, 1984, 54(1):115-173.
[25] ALAUZET F, LOSEILLE A. A decade of progress on anisotropic mesh adaptation for computational fluid dynamics[J]. Computer-Aided Design, 2016, 72:13-39.
[26] KALLINDERIS Y, LYMPEROPOULOU E M, ANTONELLIS P. Flow feature detection for grid adaptation and flow visualization[J]. Journal of Computational Physics, 2017, 341:182-207.