材料工程与机械制造

二维活塞航空燃油泵容积效率分析

  • 钱家圆 ,
  • 申屠胜男 ,
  • 阮健
展开
  • 浙江工业大学 机械工程学院, 杭州 310023

收稿日期: 2019-07-04

  修回日期: 2019-12-24

  网络出版日期: 2019-12-19

基金资助

国家自然科学基金(51675482)

Volumetric efficiency analysis of two-dimensional piston aviation fuel pump

  • QIAN Jiayuan ,
  • SHENTU Shengnan ,
  • RUAN Jian
Expand
  • College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China

Received date: 2019-07-04

  Revised date: 2019-12-24

  Online published: 2019-12-19

Supported by

National Natural Science Foundation of China (51675482)

摘要

提出了一种二维活塞燃油泵,该泵利用二维活塞的旋转运动将配流机构集成到活塞上,去除了传统柱塞泵独立的配流机构,简化了泵的结构、提升了泵的功率密度,而且由于主要运动机构采用了滚动轴承支撑,免除了滑动摩擦副及其产生的泄漏,提高了效率。对泵的容积效率进行理论分析和实验研究。结合泵的结构原理分析了造成容积损失的内泄、外泄及油液压缩性等3种主要原因;应用层流和紊流的缝隙流动基本理论推导出泄漏解析表达式,着重分析了不同配流开口形式产生的内泄漏;综合考虑油液压缩性和泄漏获得了容积效率数学模型。理论研究表明采用负开口配流形式可以有效减小内泄漏,定量分析了泄漏流量与负开口量的关系,同时利用Fluent进行配流过程中泵腔内的流场数值模拟,结果表明可以有效减小油液倒灌。为了验证理论分析的有效性,制作二维活塞燃油泵样机,以航空煤油为介质进行台架实验。样机实验结果表明在负载压力2 MPa,转速从1 000 r/min到5 000 r/min,容积效率从93.6%提升到98.1%;当转速为2 000 r/min,负载压力从1 MPa增大到5 MPa,容积效率从97.5%降低到92.3%。以现有的齿轮泵和柱塞泵相比容积效率显著提高,理论与实验的结果偏差在4%以内,表明理论分析的有效性和正确性。

本文引用格式

钱家圆 , 申屠胜男 , 阮健 . 二维活塞航空燃油泵容积效率分析[J]. 航空学报, 2020 , 41(4) : 423267 -423267 . DOI: 10.7527/S1000-6893.2019.23267

Abstract

This paper proposes a type of two-dimensional piston fuel pump. The pump uses the rotation motion of the two-dimensional piston to integrate the valve mechanism into the piston, which eliminates the independent valve mechanism of the traditional piston pump, simplifies the structure of the pump, and improves the power density of the pump. At the same time, because the main moving mechanism adopts rolling bearing support, the sliding friction pair and its leakage are avoided, and the efficiency is improved. The volume efficiency of the pump is studied theoretically and experimentally. Combined with the structural principle of the pump, three main causes of volume loss are analyzed, including internal leakage, external leakage, and oil compressibility. Based on the basic theory of laminar and turbulent flow, the analytical expression of leakage is derived, and the internal leakage caused by different port forms is analyzed. Considering the compressibility and leakage of oil, a mathematical model of volumetric efficiency is obtained. The theoretical research shows that the negative opening distribution can effectively reduce the internal leakage, and the relationship between the leakage flow and the negative opening is quantitatively analyzed. At the same time, Fluent is used to simulate the flow field in the pump cavity, and the results show that it can effectively reduce the oil backflow. In order to verify the effectiveness of the theoretical analysis, a two-dimensional piston fuel pump prototype is made, and aviation kerosene is used as the medium for bench test. The experimental results of the prototype show that when the load pressure is 2 MPa, the volumetric efficiency is increased from 93.6% to 98.1% and the rotating speed increased from 1 000 r/ min to 5 000 r/min. When the rotating speed is 2 000 r/min, the load pressure increases from 1 MPa to 5 MPa, and the volumetric efficiency decreases from 97.5% to 92.3%. Compared with the existing gear pump and plunger pump, the volumetric efficiency is significantly improved. The deviation between the theoretical and experimental results is less than 4%, indicating the validity and correctness of the theoretical analysis.

参考文献

[1] 钱一凡.面向航空电动燃油泵的齿轮泵研究[D].南京:南京航空航天大学, 2016. QIAN Y F. Research on gear pump for aviation electric fuel pump[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2016(in Chinese).
[2] 李玉龙,孙付春.基于离心作用的齿轮泵容积效率和困油现象分析[J].农业工程学报, 2011, 27(3):147-151. LI Y L, SUN F C. Theoretical analysis of volumetric efficiency and phenomenon of trapped oil under centrifugation in external spur-gear pump[J]. Transactions of the CSAE, 2011, 27(3):147-151(in Chinese).
[3] WANG S. Improving the volumetric efficiency of the axial piston pump[J]. Journal of Mechanical Design, 2012, 134(11):3-4.
[4] 樊思齐.航空发动机控制[M].西安:西北工业大学出版社, 2008. FAN S Q. Aeroengine control[M]. Xi'an:Northwest Polytechnic University Press, 2008(in Chinese).
[5] 何必海,孙健国,叶志锋.航空燃油柱塞泵滑靴静压润滑油膜计算分析[J].航空动力学报, 2009, 24(12):2821-2827. HE B H, SUN J G, YE Z F. Calculation and analysis on film thickness of the slippers based on hydrostatic bearing in the aeronautical fuel piston pump[J]. Journal of Aerospace Power, 2009, 24(12):2821-2827(in Chinese).
[6] 李晶,吴双伟.轴向柱塞泵配流副楔形油膜温度特性[J].中国工程机械学报, 2019, 17(1):8-14. LI J, WU S W. Temperature characteristics of plane port pair of axial piston pump[J]. Chinese Journal of Construction Machinery, 2019, 17(1):8-14(in Chinese).
[7] 杨华勇,马吉恩,徐兵.轴向柱塞泵流体噪声的研究现状[J].机械工程学报, 2009, 45(8):71-79. YANG H Y, MA J E, XU B. Research status of axial piston pump fluid-borne noise[J]. Journal of Mechanical Engineering, 2009, 45(8):71-79(in Chinese).
[8] 杨华勇,张斌,徐兵.轴向柱塞泵/马达技术的发展演变[J].机械工程学报, 2008,44(10):1-8. YANG H Y, ZHANG B, XU B. Development of axial piston pump/motor technology[J]. Journal of Mechanical Engineering, 2008,44(10):1-8(in Chinese).
[9] 闻德生,刘忠迅,刘巧燕,等.平衡式双定子泵流量脉动理论分析[J].上海交通大学学报, 2014, 48(8):1155-1158. WEN D S, LIU Z X, LIU Q Y, et al. Theoretical analysis of flow pulse of balanced double-stator multi-pump[J]. Journal of Shanghai Jiaotong University, 2014, 48(8):1155-1158(in Chinese).
[10] 汤何胜,訚耀保,李晶.轴向柱塞泵滑靴副间隙泄漏及摩擦转矩特性[J].华南理工大学学报(自然科学版), 2014, 42(7):74-79. TANG H S, YIN Y B, LI J. Characteristics of clearance leakage and friction torque of slipper pair in axial piston pump[J]. Journal of South China University of Technology (Natural Science Edition), 2014, 42(7):74-79(in Chinese).
[11] 谢江辉,刘健,尚进.斜盘式轴向柱塞泵泄漏量的分析与计算[J].流体机械, 2016, 44(2):55-58, 70. XIE J H, LIU J, SHANG J. Analysis and calculation of leakage of swash-plate axial piston pump[J]. Fluid Machinery, 2016, 44(2):55-58, 70(in Chinese).
[12] 焦龙飞,谷立臣,许睿,等.油液压缩性影响柱塞泵容积效率的机理分析[J].机械科学与技术, 2017, 36(5):704-710. JIAO L F, GU L C, XU R, et al. Effects of fluid compressibility on piston pump volumetric efficiency[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(5):704-710(in Chinese).
[13] 许睿,谷立臣.轴向柱塞泵效率特性半经验参数化建模方法[J].农业机械学报, 2016, 47(7):382-390. XU R, GU L C. Semi-empirical parametric modeling for efficiency characteristics of axial piston pump[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(7):382-390(in Chinese).
[14] 阮健,杨继隆,历明忠. 2D数字换向阀的步进特性分析[J].浙江工业大学学报, 1999, 27(1):1-5. RUAN J, YANG J L, LI M Z. Analysis of stepping characteristics of 2D digital reversing valve[J]. Journal of Zhejiang University of Technology, 1999, 27(1):1-5(in Chinese).
[15] 阮健,李进园,金丁灿,等.二维(2D)活塞泵原理性验证研究[J].浙江工业大学学报, 2017, 45(3):264-269. RUAN J,LI J Y,JIN D C, et al. Research and feasibility verification of two-dimensional (2D) piston pump[J]. Journal of Zhejiang University of Technology, 2017, 45(3):264-269(in Chinese).
[16] 胡仁喜,苑士华,刘红宁,等.高压高速条件下柱塞副泄漏流场分析[J].农业机械学报, 2009, 40(4):221-226. HU R X, YUAN S H, LIU H N, et al. Analysis on the leaking flow field of the piston sector considering the high press and high velocity[J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(4):221-226(in Chinese).
[17] 王积伟,章宏甲,黄谊.液压传动[M].北京:机械工业出版社, 2007. WANG J W, ZHANG H J, HUANG Y. Hydraulic drive[M]. Beijing:Mechanical Industry Press, 2007(in Chinese).
[18] 阮健.电液(气)直接数字控制技术[M].杭州:浙江大学出版社, 2000. RUAN J. Electro-hydraulic (gas) direct digital control technology[M]. Hangzhou:Zhejiang University Press, 2000(in Chinese).
[19] 罗恒星,谷立臣,许睿,等.考虑有效体积弹性模量的柱塞泵流场仿真分析[J].机械科学与技术, 2017, 36(7):1035-1041. LUO H X, GU L C, XU R, et al. Simulation analysis on flow field of piston pump considering the effective volume elastic modulus[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(7):1035-1041(in Chinese).
[20] MA J E, FANG Y T, XU B, et al. Optimization of cross angle based on the pumping dynamics model[J]. Journal of Zhejiang University-Science A (Applied Physics&Engineering), 2010, 11(3):181-190.
[21] MA J E, XU B, ZHANG B, et al. Flow ripple of axial piston pump with computational fluid dynamic simulation using compressible hydraulic oil[J]. Chinese Journal of Mechanical Engineering, 2010, 23(1):45-52.
[22] KIM S, MURRENHOFF H. Measurement of effective bulk modulus for hydraulic oil at low pressure[J]. ASME Journal of Fluids Engineering, 2012, 134(2):21201-21210.
文章导航

/