综述

翼型动态失速影响因素及流动控制研究进展

  • 杨鹤森 ,
  • 赵光银 ,
  • 梁华 ,
  • 王博
展开
  • 1. 空军工程大学 等离子体动力学重点实验室, 西安 710038;
    2. 中国空气动力研究与发展中心 空气动力学国家重点实验室, 绵阳 621000;
    3. 南京航空航天大学 直升机旋翼动力学国家级重点实验室, 南京 210016

收稿日期: 2019-10-23

  修回日期: 2019-11-14

  网络出版日期: 2019-12-13

基金资助

空气动力学国家重点实验室开放基金(SKLA20180207);国家自然科学基金(11802341)

Research progress on influence factors of airfoil dynamic stall and flow control

  • YANG Hesen ,
  • ZHAO Guangyin ,
  • LIANG Hua ,
  • WANG Bo
Expand
  • 1. Key Laboratory of Science and Technology on Plasma Dynamics, Air Force Engineering University, Xi'an 710038, China;
    2. State Key Laboratory of Aerodynamics, China Aerodynamics Research and Development Center, Mianyang 621000, China;
    3. National Key Laboratory of Science and Technology on Rotorcraft Aeromechanics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2019-10-23

  Revised date: 2019-11-14

  Online published: 2019-12-13

Supported by

The Open Fund from State Key Laboratory of Aerodynamics (SKLA20180207);National Natural Science Foundation of China (11802341)

摘要

深入认识翼型动态失速,结合有效流动控制手段,对解决直升机、风力机桨叶等动态失速引起的高阻力、大低头力矩等气动问题具有重要意义。本文首先介绍了翼型动态失速的流场特点和危害,进而分析了缩减频率、雷诺数、马赫数以及翼型型面等参数对动态失速的影响,并在此基础上总结了常见的动态失速流动控制方法及其研究进展。等离子体气动激励易于产生快速、可控的宽频带气动激励,在动态失速控制领域具有潜力,本文着重介绍了等离子体气动激励动态失速控制的概念和流动控制原理,总结了近来年等离子体激励在翼型动态失速控制上的进展。

本文引用格式

杨鹤森 , 赵光银 , 梁华 , 王博 . 翼型动态失速影响因素及流动控制研究进展[J]. 航空学报, 2020 , 41(8) : 23605 -023605 . DOI: 10.7527/S1000-6893.2019.23605

Abstract

An in-depth understanding of airfoil dynamic stall, combined with effective flow control means, is of great significance for solving the aerodynamic problems such as high resistance and high bow torque caused by the dynamic stall of helicopter and wind turbine blades. In this paper, the characteristics and hazards of airfoil dynamic stall are firstly introduced, and then the effects of reduced frequency, Reynolds number, Mach number, and airfoil profile on dynamic stall are analyzed. On this basis, the common dynamic stall flow control methods and their research progress are summarized. The plasma aerodynamic actuation is easy to produce fast and controllable wide-band aerodynamic actuation, which has potential in the field of dynamic stall control. The concept of dynamic stall control with plasma aerodynamic actuation and the principle of flow control are introduced in detail, and the progress of plasma actuation in airfoil dynamic stall control in recent years is summarized.

参考文献

[1] 李国强, 常智强, 张鑫, 等. 翼型动态失速等离子体流动控制试验[J]. 航空学报, 2018, 39(8):122111. LI G Q, CHANG Z Q, ZHANG X, et al. Plasma flow control test for airfoil dynamic statics[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(8):122111(in Chinese).
[2] 杨慧强, 许和勇, 叶正寅. 基于联合射流的翼型动态失速流动控制研究[J]. 航空工程进展, 2018, 9(4):120-130. YANG H Q, XU H Y, YE Z Y. Study on the flow control of the airfoil dynamic stall using the co-flow jet[J]. Advances in Aeronautical Science and Engineering, 2018, 9(4):120-130(in Chinese).
[3] HIMMELSKAMP H. Profile investigations on a rotating airscrew[M]. Göttingen:Ministry of Aircraft Production, 1947:832.
[4] HAM N D. Aerodynamic loading in a two-dimensional airfoil during dynamic stall[J]. AIAA Journal, 1968, 6(10):1927-1934.
[5] EKATERINARIS J A, PLATZER M. Computational prediction of airfoil dynamic stall[J]. Progress in Aerospace Sciences, 1998, 33(11-12):759-846.
[6] 王清, 招启军, 赵国庆. 旋翼翼型动态失速流场特性PIV试验研究及L-B模型修正[J]. 力学学报, 2014, 46(4):631-635. WANG Q, ZHAO Q J, ZHAO G Q. PIV experiments on flowfield characteristics of rotor airfoil dynamic stall and modifications of L-B model[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(4):631-635(in Chinese).
[7] 叶辉, 吴庆宪, 陈谋. 非定常条件下大迎角机动控制[J]. 哈尔滨工业大学学报, 2016, 48(4):84-90. YE H, WU Q X, CHEN M. Control of high angle of attack maneuver under unsteady aerodynamic condition[J]. Journal of Harbin Institute of Technology, 2016, 48(4):84-90(in Chinese).
[8] 屠宝锋, 胡骏. 压气机三维非定常动态失速过程试验研究[J]. 航空学报, 2010, 31(11):2124-2129. TU B F, HU J. Experimental investigation on three-dimensional unsteady stall inception in compressors[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(11):2124-2129(in Chinese).
[9] SEYEDNIA M, MASDARI M, VAKILIPOUR S. The influence of oscillating trailing-edge flap on the dynamic stall control of a pitching wind turbine airfoil[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41(4):192.
[10] BANGGA G. Numerical studies on dynamic stall characteristics of a wind turbine airfoil[J]. Journal of Mechanical Science and Technology, 2019, 33(3):1257-1262.
[11] LARSEN J W, NIELSEN S R K, KRENK S. Dynamic stall model for wind turbine airfoils[J]. Journal of Fluids & Structures, 2007, 23(7):959-982.
[12] 白鹏, 崔尔杰, 周伟江, 等. 等速上仰翼型动态失速现象研究[J]. 力学学报, 2004, 36(5):569-576. BAI P, CUI E J, ZHOU W J, et al. Study on dynamic stayout of isokinetic upturn airfoil[J]. Chinese Journal of Theoretical and Applied Mechanics, 2004, 36(5):569-576(in Chinese).
[13] KORN J. Estimated effect of circumferential distortion on axial compressors using parallel compressor theory and dynamic stall delay[C]//12th Aerospace Sciences Meeting, 1974.
[14] RICHEZ F. Analysis of dynamic stall mechanisms in helicopter rotor environment[J]. Journal of the American Helicopter Society, 2018, 63(2):1-11.
[15] NIU J, LEI J, LU T. Numerical research on the effect of variable droop leading-edge on oscillating NACA 0012 airfoil dynamic stall[J]. Aerospace Science & Technology, 2018, 72:476-485.
[16] 蒋瑾, 杨爱明, 翁培奋. 合成射流用于动态失速控制的数值模拟[J]. 上海大学学报(自然科学版), 2008, 14(4):405-411. JIANG J, YANG A M, WENG P F. Numerical simulation of dynamic stall control using synthetic jet[J]. Journal of Shanghai University (Natural Science), 2008, 14(4):405-411(in Chinese).
[17] 王清. 旋翼动态失速力学机理及气动外形优化研究[D]. 南京:南京航空航天大学, 2017:61-72. WANG Q. Research on dynamic stall mechanics mechanism and aerodynamic shape optimization of rotor[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2017:61-72(in Chinese).
[18] 刘峥. 动态失速对直升机空中共振的影响分析[D]. 南京:南京航空航天大学, 2013:3-8. LIU Z. Effects of dynamic stall on helicopter air resonance[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2013:3-8(in Chinese).
[19] 王荣. 直升机旋翼桨毂振动载荷与桨叶动态失速控制[D]. 南京:南京航空航天大学, 2012:67-75. WANG R. Vibration load of rotor hub and dynamic stall control of rotor blade[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2012:67-75(in Chinese).
[20] FERREIRA C S, VAN BUSSEL G, VAN KUIK G. 2D CFD simulation of dynamic stall on a vertical axis wind turbine:Verification and validation with PIV measurements[C]//45th AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2007.
[21] 陈文轩. 直升机动态失速研究[J]. 直升机技术, 2008, 155(3):4-18. CHEN W X. Research on dynamic stall of helicopter[J]. Helicopter Technique, 2008, 155(3):4-18(in Chinese).
[22] 陈文轩. CFD法中的动态失速模拟[J]. 直升机技术, 2008,155(3):55-68. CHEN W X. Dynamic stall simulation in CFD[J]. Helicopter Technique, 2008, 155(3):55-68(in Chinese).
[23] 孔卫红, 陈仁良, 孙振航. 旋翼翼型低速动态失速研究[J]. 南京航空航天大学学报, 2018, 50(2):213-220. KONG W H, CHEN R L, SUN Z H. Study on low-speed dynamic stall of rotor airfoil[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2018, 50(2):213-220(in Chinese).
[24] 王适存, 徐国华. 直升机旋翼空气动力学的发展[J]. 南京航空航天大学学报, 2001, 33(3):203-211. WANG S C, XU G H. Development of helicopter rotor aerodynamics[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2001, 33(3):203-211(in Chinese).
[25] ANDERSON J D. Fundamentals of aerodynamics[M]. New York:McGraw-Hill, 1984:1-24.
[26] CARR L W. Progress in analysis and prediction of dynamic stall[J]. Journal of Aircraft, 1988, 25(1):6-17.
[27] KARIM M A, ACHARYA M. Suppression of dynamic-stall vortices over pitching airfoils by leading-edge suction[J]. AIAA Journal, 1994, 32(8):1647-1655.
[28] GHARALI K, JOHNSON D A. PIV-based load investigation in dynamic stall for different reduced frequencies[J]. Experiments in Fluids, 2014, 55(8):1803.
[29] LEISHMAN J G. Dynamic stall experiments on the NACA 23012 aerofoil[J]. Experiments in Fluids, 1990, 9(1-2):49-58.
[30] GUPTA S, LEISHMAN J G. Dynamic stall modelling of the S809 aerofoil and comparison with experiments[J]. Wind Energy, 2010, 9(6):521-547.
[31] AKBARI M H, PRICE S J. Simulation of dynamic stall for a NACA 0012 airfoil using a vortex method[J]. Journal of Fluids & Structures, 2003, 17(6):855-874.
[32] JUMPER E J, SCHRECK S J, DIMMICK R L. Lift-curve characteristics for an airfoil pitching at constant rate[J]. Journal of Aircraft, 1987, 24(10):680-687.
[33] GREGOREK G M, HOFFMANN M J, RAMSAY R R, et al. A study of pitch oscillation and roughness on airfoils used for horizontal axis wind turbines:NREL/TP-442-7386[R]. Golden:National Renewable Energy Lab, 1995.
[34] WANG F, CUI J Q. Flight dynamics modeling of coaxial rotorcraft UAVs[M]. Berlin:Springer, 2015:1217-1256.
[35] BOHL D G, KOOCHESFAHANI M M. MTV measurements of the vortical field in the wake of an airfoil oscillating at high reduced frequency[J]. Journal of Fluid Mechanics, 2009, 620:63-88.
[36] RIVAL D, TROPEA C. Characteristics of pitching and plunging airfoils under dynamic-stall conditions[J]. Journal of Aircraft, 2010, 47(1):80-86.
[37] SCHRECK S J, HELIN H E. Unsteady vortex dynamics and surface pressure topologies on a finite pitching wing[J]. Journal of Aircraft, 1994, 31(4):899-907.
[38] CHOUDHRY A, LEKNYS R, ARJOMANDI M, et al. An insight into the dynamic stall lift characteristics[J]. Experimental Thermal and Fluid Science, 2014, 58:188-208.
[39] SHENG W, GALBRAITH R A, COTON F N. A modified dynamic stall model for low Mach numbers[J]. Journal of Solar Energy Engineering, 2007, 130(3):031013.
[40] 赵国庆. 直升机旋翼非定常动态失速的CFD模拟及其主动流动控制研究[D]. 南京:南京航空航天大学, 2015:58-63. ZHAO G Q. CFD simulation of unsteady dynamic stall of helicopter rotor and active flow control[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2015:58-63(in Chinese).
[41] 上官云信, 周瑞兴, 郗忠祥, 等. 折算频率对翼型动态升力特性影响的初步研究[J].实验力学, 1997, 12(3):457-461. SHANGGUAN Y X, ZHOU R X, XI Z X, et al. Effect of reduced frequency on airfoil dynamic lift characteristics[J]. Journal of Experimental Mechanics, 1997, 12(3):457-461(in Chinese).
[42] 张瑞民, 赵俊波, 郭少杰. 翼型动态特性数值模拟及其影响因素分析[J]. 航空计算技术, 2016, 46(4):75-77. ZHANG R M, ZHAO J B, GUO S J. Numerical simulation of airfoil dynamic characteristics and analysis of influencing factors[J]. Aeronautical Computing Technique, 2016, 46(4):75-77(in Chinese).
[43] CHOUDHURI P G, KNIGHT D D. Effects of compressibility, pitch rate and reynolds number on unsteady incipient leading-edge boundary layer separation over a pitching airfoil[J]. Journal of Fluid Mechanics, 2006, 308(1):195-217.
[44] GERONTAKOS P, LEE T. PIV study of flow around unsteady airfoil with dynamic trailing-edge flap deflection[J]. Experiments in Fluids, 2008, 45(6):955-972.
[45] ROBINSON M, WISSLER J. Pitch rate and reynolds number effects on a pitching rectangular wing[C]//6th Applied Aerodynamics Conference, 1988:428-438.
[46] ZHANG X, SCHLVTER J U. Numerical study of the influence of the Reynolds-number on the lift created by a leading edge vortex[J]. Physics of Fluids, 2012, 24(6):1-10.
[47] OI M V, BERNAL L, KANG C K, et al. Shallow and deep dynamic stall for flapping low reynolds number airfoils[J]. Experiments in Fluids, 2009, 46(5):883-901.
[48] RAMSAY R R, HOFFMAN M J, GREGOREK G M. Effects of grit roughness and pitch oscillations on the S801 airfoil:NREL/TP-442-7817[R]. Columbus:The Ohio State University, 1996.
[49] YAN H. Computational modelling of solidity effects on blade elements with an airfoil profile for wind turbines[C]//North American Wind Energy Academy 2015 Symposium. Blacksburg:Virginia Tech, 2015:1-20.
[50] AMIRALAEI M R, ALIGHANBARI H, HASHEMI S M. An investigation into the effects of unsteady parameters on the aerodynamics of a low Reynolds number pitching airfoil[J]. Journal of Fluids & Structures, 2010, 26(6):979-993.
[51] HANSEN K L, KELSO R M, DALLY B B. Performance variations of leading-edge tubercles for distinct airfoil profiles[J]. AIAA Journal, 2011, 49(1):185-194.
[52] 夏玉顺, 郗忠祥, 周瑞兴, 等. NACA 0012翼型动态失速特性和测压方法的研究[J]. 航空学报, 1996, 17(7):25-30. XIA Y S, XI Z X, ZHOU R X, et al. Study on NACA 0012 airfoil dynamic stall characteristics and pressure measurement methods[J]. Acta Aeronautica et Astronautica Sinica, 1996, 17(7):25-30(in Chinese).
[53] 杜标, 李雪斌, 王龙, 等. 不同风速下风力机动态特性研究[J].制造业自动化, 2017, 39(12):86-89, 94. DU B, LI X B, WANG L, et al. Dynamic characteristics of wind turbine under different wind speeds[J]. Manufacturing Automation, 2017, 39(12):86-89, 94(in Chinese).
[54] CARR L W, MCALISTER K W, MCCROSKEY W J. Analysis of the development of dynamic stall based on oscillating airfoil experiments:NASA TND-8382[R]. Washington, D.C.:NASA, 1977.
[55] EKATERINARIS J A, CHANDRASEKHARA M S, PLATZER M F. Recent development in dynamic stall measurements computations and control:AIAA-2005-1296[R]. Reston:AIAA, 2005.
[56] CHANDRASEKHARA M S, WILDER M C, CARR L W. Compressible dynamic stall control:A comparison of different approaches:AIAA-1999-3122[R]. Reston:AIAA, 1999.
[57] 许和勇, 邢世龙, 叶正寅, 等. 基于充气前缘技术的旋翼翼型动态失速抑制[J]. 航空学报, 2017, 38(6):120799. XU H Y, XING S L, YE Z Y, et al. Dynamic stall suppression of rotor airfoil based on aerated leading edge technology[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(6):120799(in Chinese).
[58] MCCROSKEY W J, MCALISTER K W, CARR L W, et al. Dynamic stall on advanced airfoil sections[J]. Journal of the American Helicopter Society, 1980, 26(3):40-50.
[59] VISBAL M R. Dynamic stall of a constant-rate pitching airfoil[J]. Journal of Aircraft, 1990, 27(5):400-407.
[60] CHANDRASEKHARA M S, CARR L W. Flow visualization studies of the Mach number effects on the dynamic stall of an oscillating airfoil[J]. Journal of Aircraft, 1990, 27(6):516-522.
[61] LⅡVA J. Unsteady aerodynamic and stall effects on helicopter rotor blade airfoil sections[C]//Aerospace Sciences Meeting, 1968:58-68.
[62] SHENG W, GALBRAITH R A M D, COTON F N. A new stall-onset criterion for low speed dynamic-stall[J]. Journal of Solar Energy Engineering, 2006, 128(4):461-471.
[63] LEISHMAN J G. Principles of helicopter aerodynamics[M]. Cambridge:Cambridge University Press, 2006:24-39.
[64] MULLENERS K, RAFFEL M. The onset of dynamic stall revisited[J]. Experiments in Fluids, 2011, 52(3):779-793.
[65] 王友进, 闫超, 周涛. 不同厚度翼型DSV运动数值研究[J]. 北京航空航天大学学报, 2006, 32(2):153-157. WANG Y J, YAN C, ZHOU T. Numerical study on DSV motion of airfoil with different thickness[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(2):153-157(in Chinese).
[66] 冉景洪, 刘子强, 白鹏. 相对弯度对低雷诺数流动中翼型动态气动力特性的影响[J]. 计算力学学报, 2010, 27(1):88-94. RAN J H, LIU Z Q, BAI P. Influence of relative curvature on aerodynamic characteristics of airfoil in low Reynolds number flows[J]. Chinese Journal of Computational Mechanics, 2010, 27(1):88-94(in Chinese).
[67] LORBER P F, CARTA F O, COVINO JR A F. An oscillating three-dimensional wing experiment:Compressibility, sweep, rate, waveform, and geometry effects on unsteady separation and dynamic stall[R]. East Hartford:United Technologies Research Center, 1992.
[68] PIZIALI R. An experimental investigation of 2-D and 3-D oscillating wing aerodynamics for a range of angles of attack including stall[C]//NASA Technical Memorandum 4632. Washington, D.C.:NASA, 1993:17-31.
[69] SPENTZOS A, BARAKOS G, BADCOCK K, et al. Investigation of three-dimensional dynamic stall using computational fluid dynamics[J]. AIAA Journal, 2005, 43(5):1023-1033.
[70] VISBAL M, YILMAZ T O, ROCKWELL D. Three-dimensional vortex formation on a heaving low-aspect-ratio wing:Computations and experiments[J]. Journal of Fluids & Structures, 2013, 38(3):58-76.
[71] GADELHAK M, HO C M. Unsteady vertical flow around three-dimensional lifting surfaces[J]. AIAA Journal, 1986, 24(5):713-721.
[72] TAN C M, CARR L W. The AFDD international dynamic stall workshop on correction of dynamic stall models with 3-D dynamic stall data:NASA TM 110375[R]. Washington, D.C.:NASA, 1996.
[73] 史志伟, 明晓, 王同光. 非定常自由来流对二维翼型气动特性的影响研究[J]. 空气动力学学报, 2008, 26(4):76-81, 91. SHI Z W, MING X, WANG T G. The effects of unsteady free stream on the static and pitching airfoils[J]. Acta Aerodynamica Sinica, 2008, 26(4):76-81, 91(in Chinese).
[74] HIRD K, FRANKHOUSER M W, GREGORY J W, et al. Compressible dynamic stall of an SSC-A09 airfoil subjected to coupled pitch and freestream mach oscillations[C]//70th Annual Forum of the American Helicopter Society, 2014:3049-3061.
[75] MARTIN P B, WILSON J S, BERRY J D, et al. Passive control of compressible dynamic stall:AIAA-2008-7506[R]. Reston:AIAA, 2008.
[76] HEINE B, MULLENERS K, JOUBERT G, et al. Dynamic stall control by passive disturbance generators:AIAA-2011-3371[R]. Reston:AIAA, 2011.
[77] 王元元, 张彬乾. Gurney襟翼改善翼型动态失速特性研究[J]. 飞行力学, 2010, 28(4):5-8. WANG Y Y, ZHANG B Q. Study on Gurney flaps improving airfoil dynamic stall characteristics[J]. Flight Dynamics, 2010, 28(4):5-8(in Chinese).
[78] 张仕栋. 波状前缘翼动态失速控制数值研究[D]. 上海:上海交通大学, 2015:3-24. ZHANG S D. Numerical study on dynamic stall control of wavy leading edge wing[D]. Shanghai:Shanghai Jiao Tong University, 2015:3-24(in Chinese).
[79] JOO W, LEE B, YEE K, et al. Combining passive control method for dynamic stall control[J]. Journal of Aircraft, 2006, 43(4):1120-1128.
[80] CHANDRASEKHARA M S, MARTIN P B, TUNG C. Compressible dynamic stall performance of a variable droop leading edge airfoil with a gurney flap[J]. Journal of the American Helicopter Society, 2008, 53(1):18-25.
[81] MARTIN P, WILSON J, BERRY J, et al. Passive control of compressible dynamic stall:AIAA-2008-7506[R]. Reston:AIAA, 2008.
[82] MAI H, DIETZ G, GEISSLER W, et al. Dynamic stall control by leading-edge vortex generators[J]. Journal of the American Helicopter Society, 2008, 53(1):26-36.
[83] PAPE A L, COSTES M, RICHEZ F, et al. Dynamic stall control using deployable leading-edge vortex generators[J]. AIAA Journal, 2012, 50(10):2135-2145.
[84] STORMS B L, ROSS J C. Experimental study of lift-enhancing tabs on a two-element airfoil[J]. Journal of Aircraft, 2015, 32(5):1072-1078.
[85] FRIC T F, ROSHKO A. Vortical structure in the wake of a transverse jet[J]. Journal of Fluid Mechanics, 1994, 279(1):1-47.
[86] SINGH C, PEAKE D J, KOKKALIS A, et al. Control of rotorcraft retreating blade stall using air-jet vortex generators[J]. Journal of Aircraft, 2006, 43(4):1169-1176.
[87] NIU J, LEI J, LU T. Numerical research on the effect of variable droop leading-edge on oscillating NACA 0012 airfoil dynamic stall[J]. Aerospace Science and Technology, 2018, 72(1):476-485.
[88] 王建涛. 直升机旋翼前缘下垂控制动态失速数值模拟研究[D]. 绵阳:中国空气动力研究与发展中心, 2008:26-55. WANG J T. Numerical simulation of helicopter rotor droop control dynamic stall[D]. Mianyang:China Aerodynamics Research and Development Center, 2008:26-55(in Chinese).
[89] 黄勇, 牟斌, 陈作斌, 等. 翼型动态失速的变下垂前缘控制数值模拟[J]. 航空动力学报, 2008, 23(3):496-504. HUANG Y, MOU B, CHEN Z B, et al. Numerical simulation of variable droop leading edge control of airfoil dynamic stall[J]. Journal of Aerospace Power, 2008, 23(3):496-504(in Chinese).
[90] ZHAO G Q, ZHAO Q J. Dynamic stall control optimization of rotor airfoil via variable droop leading-edge[J]. Aerospace Science and Technology, 2015, 43(6):406-414.
[91] GEISSLERA W, VAN DER WALL B G. Dynamic stall control on flapping wing airfoils[J]. Aerospace Science and Technology, 2017, 62(3):1-10.
[92] CHANDRASEKHARA M S, WILDER M C, CARR L W. Unsteady stall control using dynamically deforming airfoils[J]. AIAA Journal, 1998, 36(10):1792-1800.
[93] MEHMET S, LAKSHMI N, SANKAR M S, et al. Dynamic stall alleviation using a deformable leading edge concept-a numerical study[J]. Journal of Aircraft, 2003, 40(1):77-85.
[94] 卢天宇, 吴小胜. 翼型前缘变形对动态失速效应影响的数值计算[J]. 航空学报, 2013, 35(4):986-994. LU T Y, WU X S. Numerical calculation effects of deforming leading edge on airfoil dynamic stall control[J]. Acta Aeronautica et Astronautica Sinica, 2013, 35(4):986-994(in Chinese).
[95] GEISSLER W, DIETZ G, MAI H, et al. Dynamic stall control investigation on a full size chord blade section[C]//30th European Rotorcraft Forum. Cologne:German Aerospace Center (DLR), 2004:1-11.
[96] GEISSLER W, DIETZ G, MAI H. Dynamic stall on a supercritical airfoil[J]. Aerospace Science and Technology, 2005, 9(5):390-399.
[97] CHANDRASEKHARA M S. A review of compressible dynamic stall control principles and methods[C]//Proceedings of the Tenth Asian Congress of Fluid Mechanics, 2004:1-6.
[98] FESZTY D, GILLIES E A, VEZZA M. Alleviation of airfoil dynamic stall moments via trailing-edge-flap flow control[J]. AIAA Journal, 2004, 42(1):17-25.
[99] 王荣, 夏品奇. 多片后缘小翼对直升机旋翼桨叶动态失速及桨毂振动载荷的控制[J]. 航空学报, 2013, 34(5):1083-1091. WANG R, XIA P Q. Control of dynamic stall of helicopter rotor blade and vibration load of rotor hub with multiple trailing edge winglets[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(5):1083-1091(in Chinese).
[100] 马奕扬, 招启军,赵国庆. 基于后缘小翼的旋翼翼型动态失速控制分析[J]. 航空学报, 2017, 38(3):120312. MA Y Y, ZHAO Q J, ZHAO G Q. Analysis of rotor airfoil dynamic stall control based on trailing edge airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(3):120312(in Chinese).
[101] GERONTAKOS P, LEE T. Dynamic stall flow control via a trailing-edge flap[J]. AIAA Journal, 2006, 44(3):469-480.
[102] LEE T, SU Y Y. Unsteady airfoil with a harmonically deflected trailing-edge flap[J]. Journal of Fluids and Structures, 2011, 27(8):1411-1424.
[103] 刘洋, 向锦武. 后缘襟翼对直升机旋翼翼型动态失速特性的影响[J]. 航空学报, 2013, 34(5):1028-1035. LIU Y, XIANG J W. Influence of trailing edge flaps on dynamic stall characteristics of helicopter rotor airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(5):1028-1035(in Chinese).
[104] JOO W, LEE B S, YEE K, et al. Combining passive control method for dynamic stall control[J]. Journal of Aircraft, 1971, 43(4):1120-1128.
[105] EKATERINARIS J A. Numerical investigations of dynamic stall active control for incompressible and compressible flows[J]. Journal of Aircraft, 2002, 39(39):71-78.
[106] MULLER-VAHL H F, STRANGFELD C, NAYERI C N, et al. Control of thick airfoil deep dynamic stall using steady blowing[J]. AIAA Journal, 2015, 53(2):277-295.
[107] BARLAS T K, VAN KUIK G A M. Review of state of the art in smart rotor control research for wind turbines[J]. Progress in Aerospace Sciences, 2010, 46(1):1-27.
[108] STRAUB F K. A feasibility study of using smart materials for rotor control[J]. Smart Materials and Structures, 1996, 5(1):1-10.
[109] WYGNANSKY I, GREENBLATT D, SEIFERT A. Airfoil with dynamic stall control by oscillatory forcing:European, 98304902.4[P]. 1998.
[110] TANAKA M, OSAKO T, SHIODA K, et al. Vortex generating apparatus and method:European, 14153570.8[P]. 2014.
[111] 许和勇, 邢世龙, 叶正寅. 一种直升机旋翼动态失速主动流动控制装置及方法:中国, ZL201610363864.9[P]. 2018-04-17. XU H Y, XING S L, YE Z Y. An active flow control device for rotor dynamic stall of helicopter and a method:China, ZL201610363864.9[P]. 2018-04-17(in Chinese).
[112] 许和勇, 杨慧强, 乔晨亮, 等. 用于直升机旋翼叶片的联合射流控制装置及其控制方法:中国, ZL201610624036.6[P], 2018-03-16. XU H Y, YANG H Q, QIAO C L, et al. Joint jet control device for helicopter rotor blade and its control method:China, ZL201610624036.6[P], 2018-03-16(in Chinese).
[113] 赵光银, 梁华, 吴云, 等. 旋翼桨叶动态失速等离子体流动控制装置和方法:中国, ZL201910495450.5[P]. 2019-05-28. ZHAO G Y, LIANG H, WU Y, et al. Plasma flow control device and method for rotor blade dynamic stall:China, ZL201910495450.5[P]. 2019-05-28(in Chinese).
[114] ADERA A, RAMAKRISHNAN S. Review on dynamic stall control in airfoils[C]//ICAST 2018. Berlin:Springer, 2018:380-400.
[115] 张鑫, 黄勇, 王勋年, 等. 超临界机翼介质阻挡放电等离子体流动控制[J]. 航空学报, 2016, 37(6):1733-1742. ZHANG X, HUANG Y, WANG X N, et al. Flow control of dielectric barrier discharge plasma in supercritical airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(6):1733-1742(in Chinese).
[116] WANG J, LI Y H, XING F. Investigation on oblique shock wave control by arc discharge plasma in supersonic airflow[J]. Journal of Applied Physics, 2009, 106(7):073307.
[117] 杨瑞, 罗振兵, 夏智勋, 等. 高超声速导弹等离子体合成射流控制数值研究[J].航空学报, 2016, 37(6):1722-1732. YANG R, LUO Z B, XIA Z X, et al. Numerical study on plasma synthesis jet control of hypersonic missile[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(6):1722-1732(in Chinese).
[118] 吴云, 李应红. 等离子体流动控制研究进展与发展展望[J]. 航空学报, 2015, 36(2):381-405. WU Y, LI Y H. Research progress and prospect of plasma flow control[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2):381-405(in Chinese).
[119] 李应红, 梁华, 马清源, 等. 脉冲等离子体气动激励抑制翼型吸力面流动分离的实验[J]. 航空学报, 2008, 29(6):1429-1435. LI Y H, LIANG H, MA Q Y, et al. Experimental study on flow separation of airfoil suction surface under pulsed plasma aerodynamic actuation[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(6):1429-1435(in Chinese).
[120] 周朋辉, 田希晖, 车学科, 等. 不同压力下微秒脉冲表面介质阻挡放电流场实验[J]. 航空动力学报, 2013, 28(12):2691-2697. ZHOU P H, TIAN X H, CHE X K, et al. Experimental study on surface dielectric barrier discharge current field of microsecond pulse under different pressures[J]. Journal of Aerospace Power, 2013, 28(12):2691-2697(in Chinese).
[121] ROUPASSOV D V, NIKIPELOV A A, NUDNOVA M M, et al. Flow separation control by plasma actuator with nanosecond pulsed-periodic discharge[J]. AIAA Journal, 2009, 47(1):168-185.
[122] DEDRICK J, IM S, CAPPELLI M A, et al. Surface discharge plasma actuator driven by a pulsed 13.56 MHz-5 kHz voltage waveform[J]. Journal of Physics D:Applied Physics, 2013, 46(40):405201.
[123] 梁华, 李应红, 宋慧敏, 等. 多相等离子体气动激励抑制翼型失速分离的实验[J]. 航空动力学报, 2011, 26(4):867-873. LIANG H, LI Y H, SONG H M, et al. Experimental study on multi-phase plasma aerodynamic actuation to suppress airfoil stall separation[J]. Journal of Aerospace Power, 2011, 26(4):867-873(in Chinese).
[124] 梁华, 李应红, 吴云, 等. 等离子体气动激励的数值仿真[J]. 高电压技术, 2009, 35(5):1071-1076. LIANG H, LI Y H, WU Y, et al. Numerical simulation of plasma aerodynamic actuation[J]. High Voltage Engineering, 2009, 35(5):1071-1076(in Chinese).
[125] 车学科, 聂万胜, 周朋辉, 等. 亚微秒脉冲表面介质阻挡放电等离子体诱导连续漩涡的研究[J]. 物理学报, 2013, 62(22):224702. CHE X K, NIE W S, ZHOU P H, et al. Study on continuous vortex induced by submicrosecond pulsed surface dielectric barrier discharge plasma[J]. Acta Physica Sinica, 2013, 62(22):224702(in Chinese).
[126] 宋慧敏, 吴韦韦, 崔巍, 等. 射频放电等离子体气动激励特性的实验研究[J]. 高电压技术, 2014, 40(7):2044-2048. SONG H M, WU W W, CUI W, et al. Experimental study on aerodynamic actuation characteristics of RF discharge plasma[J]. High Voltage Engineering, 2014, 40(7):2044-2048(in Chinese).
[127] 李应红, 吴云, 梁华, 等. 提高抑制流动分离能力的等离子体冲击流动控制原理[J]. 科学通报, 2010, 55(31):3060-3068. LI Y H, WU Y, LIANG H, et al. Principle of plasma impingement flow control for improving the ability of inhibiting flow separation[J]. Chinese Science Bulletin, 2010, 55(31):3060-3068(in Chinese).
[128] TRAUB L W, MILLER A, REDINIOTIS O. Effects of synthetic jet actuation on a ramping NACA 0015 airfoil[J]. Journal of Aircraft, 2004, 41(5):1153-1162.
[129] RETHMEL C, LITTLE J, TAKASHIMA K, et al. Flow separation control over an airfoil with nanosecond pulse driven DBD plasma actuators:AIAA-2011-487[R]. Reston:AIAA, 2011.
[130] 倪芳原, 史志伟, 杜海. 纳秒脉冲等离子体激励器用于圆柱高速流动控制的数值模拟[J]. 航空学报, 2014, 34(3):657-665. NI F Y, SHI Z W, DU H. Numerical simulation of high-speed cylinder flow control with nanosecond pulsed plasma actuator[J]. Acta Aeronautica et Astronautica Sinica, 2014, 34(3):657-665(in Chinese).
[131] NISHIHARA M, TAKASHIMA K, RICH J W, et al. Mach 5 bow shock control by a nanosecond pulse surface dielectric barrier discharge[J]. Physics of Fluids, 2011, 23(6):066101.
[132] WU Y, LI Y, LIANG H, et al. Nanosecond pulsed discharge plasma actuation:Characteristics and flow control performance:AIAA-2014-2118[R]. Reston:AIAA, 2014.
[133] 宋科, 杨旭东, 乔志德. 翼型动态失速DBD等离子体流动控制的数值模拟研究[J]. 航空计算技术, 2010, 40(3):5-8, 17. SONG K,YANG X D, QIAO Z D, et al. Flow control of airfoil dynamic stall based on DBD plasma actuators[J]. Aeronautical Computing Technique, 2010, 40(3):5-8, 17(in Chinese).
[134] POST M L, CORKE T C. Separation control on high angle of attack airfoil using plasma actuators[J]. AIAA Journal, 2012, 42(11):2177-2184.
[135] FRANKHOUSER M, HIRD K, NAIGLE S, et al. Nanosecond dielectric barrier discharge plasma actuator flow control of compressible dynamic stall:AIAA-2013-2341[R]. Reston:AIAA, 2013.
[136] LOMBARDI A J, BOWLES P O, CORKE T C. Closed-loop dynamic stall control using a plasma actuator[J]. AIAA Journal, 2013, 51(5):1130-1141.
[137] GLAZ B, DINAVAHI S P G, GAITONDE D V. Nanosecond pulsed plasma actuation effects on aerodynamic damping and implications for aeroelastic stability in the post-stall regime:AIAA-2012-1482[R]. Reston:AIAA, 2012.
[138] MITSUO K, WATANABE S, ATOBE T, et al. Lift enhancement of a pitching airfoil in dynamic stall by DBD plasma actuators:AIAA-2013-1119[R]. Reston:AIAA, 2013.
[139] POST M L, CORKE T C. Separation control using plasmas actuators-stationary and oscillating airfoils:AIAA-2004-0841[R]. Reston:AIAA, 2004.
[140] STARIKOVSKIY A, PERSIKOV N, MILES R. Helicopter lift force increase in hover mode by NS-SDBD plasma actuators:AIAA-2018-0936[R]. Reston:AIAA, 2018.
[141] STARIKOVSKIY A, MEEHAN K, MILES R. Dynamic stall control by NS SDBD actuator:AIAA-2018-0681[R]. Reston:AIAA, 2018.
[142] SEKIMOTO S, FUKUMOTO H, SHIMOMURA S, et al. Experimental analysis of burst actuation for separation control around a pitching NACA0015 airfoil using a DBD plasma actuator at low reynolds number:AIAA-2018-1551[R]. Reston:AIAA, 2018.
文章导航

/