综述

航空发动机压气机内部流体诱发声共振研究进展

  • 洪志亮 ,
  • 赵国昌 ,
  • 杨明绥 ,
  • 孙晓峰
展开
  • 1. 中国民航大学 适航学院, 天津 300300;
    2. 中国航发沈阳发动机研究所, 沈阳 110015;
    3. 北京航空航天大学 能源与动力工程学院, 北京 100083

收稿日期: 2019-05-10

  修回日期: 2019-05-27

  网络出版日期: 2019-12-03

基金资助

国家自然科学基金(51806146);中央高校基本科研业务费专项资金(3122018D019)

Development of flow-induced acoustic resonance in aeroengine compressors

  • HONG Zhiliang ,
  • ZHAO Guochang ,
  • YANG Mingsui ,
  • SUN Xiaofeng
Expand
  • 1. College of Airworthiness, Civil Aviation University of China, Tianjin 300300, China;
    2. AECC Shenyang Engine Research Institute, Shenyang 110015, China;
    3. School of Energy and Power Engineering, Beihang University, Beijing 100083, China

Received date: 2019-05-10

  Revised date: 2019-05-27

  Online published: 2019-12-03

Supported by

National Natural Science Foundation of China (51806146); the Fundamental Research Funds for the Central Universities (3122018D019)

摘要

声共振是一种涡声相互作用诱发的特殊声学共振现象,可产生超过160 dB的纯音噪声,不仅严重影响环境舒适性,还可引起结构件的疲劳破坏,在火箭燃烧室、军机弹仓、汽车天窗以及热交换器管束等多个工程领域内引起了设计者们的足够重视。与此同时,越来越多的研究表明航空发动机压气机内部同样存在声共振问题,其引发的叶片断裂故障也屡见不鲜,已逐渐成为国际范围内的一项研究热点问题,但对其物理机制的认识仍待完善。本文系统性阐述了压气机内部声共振的机理、试验测试、预测方法和控制措施的研究现状及其发展趋势,旨在扩展对流体诱发叶片振动方面的基础理论认知,为提升压气机设计和排故能力提供技术储备。

本文引用格式

洪志亮 , 赵国昌 , 杨明绥 , 孙晓峰 . 航空发动机压气机内部流体诱发声共振研究进展[J]. 航空学报, 2019 , 40(11) : 23139 -023139 . DOI: 10.7527/S1000-6893.2019.23139

Abstract

Flow-induced acoustic resonance, a complex coupling phenomenon between the flow and sound fields, can cause high-intense tone noise over 160 dB, which can not only severely discomfort the cabins, but also lead to acoustic fatigue issues to the nearby structures. This problem has attracted the attention of more and more designers for a variety of engineering applications, such as rocket combustors, weapon bay for military applications, sunroof of cars, and tube bank of heat exchangers. Meanwhile, enough cases have suggested that acoustic resonance can also be detected in aeroengine compressors as a potential reason for the failure of aeroengine compressor blades, making it a growing research hotspot. However, the underlying mechanism of acoustic resonance is still an open issue. A comprehensive review on the present research in theoretical and experimental studies, predict and control methods of acoustic resonance is summarized to deepen the basic understanding of flow-induced blade failures, as well as to improve the design and troubleshooting abilities of aeroengine compressors.

参考文献

[1] 洪杰, 张大义, 陈璐璐. 气流激励下的叶片高周疲劳寿命研究的发展[J]. 航空动力学报, 2009, 24(3):652-661. HONG J, ZHANG D Y, CHEN L L. Review on investigation of high cycle fatigue failures for the aero engine blade[J]. Journal of Aerospace Power, 2009, 24(3):652-661(in Chinese).
[2] 张翔, 黄秀全, 张恒铭, 等. 激波对跨声速风扇叶片颤振特性的影响[J]. 推进技术, 2016, 37(3):411-418. ZHANG X, HUANG X Q, ZHANG H M, et al. Effects of shock wave on blade flutter characteristics in transonic fan[J]. Journal of Propulsion Technology, 2016, 37(3):411-418(in Chinese).
[3] 刘南, 郭承鹏, 白俊强. 基于高阶谐波平衡的跨声速颤振高效预测方法[J]. 航空学报, 2018, 39(10):121989. LIU N, GUO C P, BAI J Q. Efficient prediction approach of transonic flutter based on high order harmonic balance[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(10):121989(in Chinese).
[4] 王志强,沈锡钢,胡骏.反推状态下大涵道比涡扇发动机气动稳定性预测与评估[J]. 航空学报, 2017, 38(2):120192. WANG Z Q, SHEN X G, HU J. Prediction and evaluation of aerodynamic stability of high bypass ratio turbofan engine deployed with thrust reverser[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2):120192(in Chinese).
[5] 张正秋, 邹正平, 王延荣, 等. 叶轮机械颤振稳定性工程预测方法在跨声风扇中的进一步探讨[J]. 航空动力学报, 2010, 25(3):537-548. ZHANG Z Q, ZOU Z P, WANG Y R, et al. Investigation of flutter prediction method for transonic fan[J]. Journal of Aerospace Power, 2010, 25(3):537-548(in Chinese).
[6] 孙海, 李坚, 杨琳, 等. 压气机风扇叶片颤振预测和抑制的工程研究[J]. 航空动力学报, 2015, 30(4):846-853. SUN H, LI J, YANG L, et al. Engineering research on prediction and suppression of blade flutter in compressor fan[J]. Journal of Aerospace Power, 2015, 30(4):846-853(in Chinese).
[7] HOLZINGER F, WARTZEK F, SCHIFFER H P, et al. Self-excited blade vibration experimentally investigated in transonic compressors:Acoustic resonance[J]. Journal of Turbomachinery, 2016, 138(4):041001.
[8] PARKER R, STONEMAN S A T. An experimental investigation of the generation and consequences of acoustic waves in an axial-flow compressor:The effect of variations in the axial spacing between blade rows[J]. Journal of Sound and Vibration, 1987, 116(3):509-525.
[9] PARKER R. An investigation of acoustic resonance effects in an axial flow compressor stage[J]. Journal of Sound and Vibration, 1968, 8(2):281-297.
[10] LEGERTON M, STONEMAN S, PARKER R. An experimental investigation into flow induced acoustic resonances in an annular cascade[C]//5th International Conference on Flow Induced Vibrations. London:Institution of Mechanical Engineers, 1991:445-452.
[11] CAMP T. A study of acoustic resonance in a low-speed multistage compressor[J]. Journal of Turbomachinery, 1999, 121(1):36-43.
[12] KAMEIER F, NEISE W. Experimental study of tip clearance losses and noise in axial turbomachines and their reduction[J]. Journal of Turbomachinery, 1997, 119(3):460-471.
[13] WEIDENFELLER J, LAWERENZ M. Time resolved measurements in an annular compressor cascade with high aerodynamic loading:GT2002-30439[R]. New York:ASME, 2002.
[14] KIELB R E, BARTER J W, THOMAS J P, et al. Blade excitation by aerodynamic instabilities:A compressor blade study:GT2003-38634[R]. New York:ASME, 2003.
[15] VIGNAU-TUQUET F, GIRARDEAU D. Aerodynamic rotating vortex instability in a multi-stage axial compressor[C]//17th International Symposium on Airbreathing Engines, 2005:1-8.
[16] CYRUS V, REHAK K, POLANSKY J. Unsteady flows in the last stator rows of axial compressor of gas turbine working in coal gasification combined cycle:GT2006-90202[R]. New York:ASME, 2006.
[17] HELLMICH B, SEUME J R. Causes of acoustic resonance in a high-speed axial compressor[J]. Journal of Turbomachinery, 2008, 130(3):031003.
[18] ZIADA S, OENGÖREN A, VOGEL A. Acoustic resonance in the inlet scroll of a turbo-compressor[J]. Journal of Fluids and Structures, 2002, 16(3):361-373.
[19] KÖNIG S, PETRY N. Parker-type acoustic resonances in the return guide vane cascade of a centrifugal compressor:Theoretical modeling and experimental verification[J]. Journal of Turbomachinery, 2012, 134(6):061029.
[20] 杨明绥, 刘思远, 王德友, 等. 航空发动机压气机声共振现象初探[J]. 航空发动机, 2012, 38(5):36-42. YANG M S, LIU S Y, WANG D Y, et al. Study of acoustic resonance for aeroengine compressors[J]. Aeroengine, 2012, 38(5):36-42(in Chinese).
[21] 武卉, 杨明绥, 王德友, 等. 多动态参数同步测试系统构建及其应用[J]. 航空学报, 2014, 35(2):391-399. WU H, YANG M S, WANG D Y, et al. Construction and application of synchronized test system of multi-dynamic parameters[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2):391-399(in Chinese).
[22] 李宏坤, 张晓雯, 郭骋, 等. 离心式压缩机声共振分析与试验验证[J]. 机械工程学报, 2014, 50(13):73-79. LI H K, ZHANG X W, GUO C, et al. Acoustic resonance analysis for centrifugal compressor and experiment verification[J]. Journal of Mechanical Engineering, 2014, 50(13):73-79(in Chinese).
[23] ZHAO F T, JING X D, YANG M S, et al. Experimental study of rotor blades vibration and noise in multistage high pressure compressor and their relevance[J]. Chinese Journal of Aeronautics, (2019-03-21)[2019-04-28]. https://doi.org/10.1016/j.cja.2019.02.008.
[24] PARKER R. Acoustic resonances and blade vibration in axial flow compressors[J]. Journal of Sound and Vibration, 1984, 92(4):529-539.
[25] PARKER R. Resonance effects in wake shedding from compressor blading[J]. Journal of Sound and Vibration, 1967, 6(3):302-309.
[26] WOODLEY B M, PEAKE N. Resonant acoustic frequencies of a tandem cascade. Part 1:Zero relative motion[J]. Journal of Fluid Mechanics, 1999, 393:215-240.
[27] WOODLEY B M, PEAKE N. Resonant acoustic frequencies of a tandem cascade. Part 2:Rotating blade rows[J]. Journal of Fluid Mechanics, 1999, 393:241-256.
[28] KOCH W. Acoustic resonances and trapped modes in annular plate cascades[J]. Journal of Fluid Mechanics, 2009, 628:155-180.
[29] KODAMA H, NAMBA M. Acoustic resonance phenomena in a three-dimensional cascade Interacting with oncoming unsteady wakes:AIAA-2015-2829[R]. Reston, VA:AIAA, 2015.
[30] KODAMA H, NAMBA M. Investigation of acoustic resonance in a three-dimensional cascade interacting with oncoming unsteady wakes:AIAA-2016-3066[R]. Reston, VA:AIAA, 2016.
[31] LIU X, WILLEKE T, HERBST F, et al. A theory on the onset of acoustic resonance in a multistage compressor[J]. Journal of Turbomachinery, 2018, 140(8):081003.
[32] PARKER R. Resonance effects in wake shedding from parallel plates:Some experimental observations[J]. Journal of Sound and Vibration, 1966, 4(1):62-72.
[33] PARKER R. Resonance effects in wake shedding from parallel plates:Calculation of resonant frequencies[J]. Journal of Sound and Vibration, 1967, 5(2):330-343.
[34] WELSH M C, STOKES A N, PARKER R. Flow-resonant sound interaction in a duct containing a plate, Part I:Semi-circular leading edge[J]. Journal of Sound and Vibration, 1984, 95(3):305-323.
[35] HOURIGAN K, THOMPSON M C, TAN B T. Self-sustained oscillations in flows around long blunt plates[J]. Journal of Fluids Structure, 2001, 15(3-4):387-398.
[36] TAN B T, THOMPSON M C, HOURIGAN K. Sources of acoustic resonance generated by flow around a long rectangular plate in a duct[J]. Journal of Fluids and Structures, 2003, 18(6):729-740.
[37] KATASONOV M M, SUNG H J, BARDAKHANOV S P. Wake flow-induced acoustic resonance around a long flat plate in a duct[J]. Journal of Engineering Thermophysics, 2015, 24(1):36-56.
[38] BLEVINS R D. The effect of sound on vortex shedding from cylinders[J]. Journal of Fluid Mechanics, 1985, 161:217-237.
[39] REYES E, FINNEGAN S, MESKELL C. Simulation of flow-induced acoustic resonance of bluff bodies in duct flow[C]//ASME 20103rd Joint US-European Fluids Engineering Summer Meeting Collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels. New York:ASME, 2010:805-813.
[40] LANGTHJEM M A, NAKANO M. Asymptotic and numerical analysis of resonance and lock-in by flow-acoustic interaction in an expansion chamber-pipe system[J]. Journal of Fluid Science and Technology, 2016, 11(4):JFST0030.
[41] ARAFA N, MOHANY A. Flow-excited acoustic resonance of isolated cylinders in cross-flow[J]. Journal of Pressure Vessel Technology, 2016, 138(1):011302.
[42] HAMAKAWA H, HINO S, NISHIDA E, et al. Phase characteristics of vortex shedding from tube banks on acoustic resonance:PVP2017-65913[R]. New York:ASME, 2017.
[43] ALZIADEH M, MOHANY A. Effect of vortex formation length on flow-excited acoustic resonance for a single spirally finned cylinder in cross-flow[J]. Canadian Acoustics, 2017, 45(3):26-27.
[44] WU L, JING X, SUN X. Prediction of vortex-shedding noise from the blunt trailing edge of a flat plate[J]. Journal of Sound Vibration, 2017, 408:20-30.
[45] KOMATSU R, IWAKAMI W, HATTORI Y. Direct numerical simulation of aeroacoustic sound by volume penalization method[J]. Computers & Fluids, 2016, 130:24-36.
[46] 陈伟杰, 乔渭阳, 王良锋, 等. 基于LES与FW-H方程的圆柱-翼型干涉噪声数值研究[J]. 航空动力学报, 2016, 31(9):2146-2155. CHEN W J, QIAO W Y, WANG L F, et al, Investigation of rod-airfoil interaction noise using large eddy simulation and FW-H equation[J]. Journal of Aerospace Power, 2016, 31(9):2146-2155(in Chinese).
[47] ZHU W J, SHEN W Z, SØRENSEN J N, et al. Improvement of airfoil trailing edge bluntness noise model[J]. Advances in Mechanical Engineering, 2016, 8(2):1-12.
[48] YOKOYAMA H, KITAMIYA K, IIDA A. Flows around a cascade of flat plates with acoustic resonance[J]. Physics of Fluids, 2013, 25(10):106104.
[49] YOKOYAMA H, YAMAMOTO H, KITAMIYA K, et al. Effects of distance between plates on flows around a cascade of flat plates with acoustic resonance:AIAA-2014-3197[R]. Reston, VA:AIAA, 2014.
[50] YOKOYAMA H, IIDA A. Identification of dominant acoustic sources in flows around square cylinder in a uniform flow[C]//International Conference on Computational Modeling, Simulation and Applied Mathematics. Lancaster, PA:DEStech Publications, Inc., 2016:1-5.
[51] HONG Z, DAI X, ZHOU N, et al. Suppression of Helmholtz resonance using inside acoustic liner[J]. Journal of Sound and Vibration, 2014, 333(16):3585-3597.
[52] DAI X, JING X, SUN X. Flow-excited acoustic resonance of a Helmholtz resonator:Discrete vortex model compared to experiments[J]. Physics of Fluids, 2015, 27(5):057102.
[53] 顾信忠, 李舜酩. 圆柱绕流气动噪声数值分析[J]. 声学技术, 2016, 35(2):95-100. GU X Z, LI S M. Numerical analysis of noise induced by flow around a cylinder[J]. Technical Acoustics, 2016, 35(2):95-100(in Chinese).
[54] 洪志亮, 高鸽, 景晓东, 等. 一种预测平板尾迹噪声的时域无网格方法[J]. 航空学报, 2015, 36(11):3501-3514. HONG Z L, GAO G, JING X D, et al. A grid-less time domain method for plate trailing edge noise prediction[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(11):3501-3514(in Chinese).
[55] MILLS R, SHERIDAN J, HOURIGAN K. Wake of forced flow around elliptical leading edge plates[J]. Journal of Fluids & Structures, 2005, 20(2):157-176.
[56] LANGTHJEM M A, NAKANO M. A numerical simulation of the hole-tone feedback cycle based on an axisymmetric discrete vortex method and Curle's equation[J]. Journal of Sound and Vibration, 2005, 288(1):133-176.
[57] LANGTHJEM M A, NAKANO M. A three-dimensional study of the hole-tone feedback problem[R]. Kyoto:Kyoto University, 2010.
[58] LANGTHJEM M A, NAKANO M. Sound generation in the hole-tone feedback problem[R]. Kyoto:Kyoto University, 2009.
[59] CHENG L, CHEN C C, DU L, et al. Application of body force concept in aeroacoustics[C]//15th International Symposium on Unsteady Aerodynamics, Aeroacoustics and Aeroelasticity of Turbines, 2018:1-12.
[60] 李其汉, 王延荣, 王建军. 航空发动机叶片高循环疲劳失效研究[J]. 航空发动机, 2003, 29(4):16-18. LI Q H, WANG Y R, WANG J J. Investigation of high cycle fatigue failures for the aero engine blades[J]. Aeroengine, 2003, 29(4):16-18(in Chinese).
[61] LU Z B, HALIM D, CHENG L. Flow-induced noise control behind bluff bodies with various leading edges using the surface perturbation technique[J]. Journal of Sound and Vibration, 2016, 369:1-15.
[62] LU Z B, CHENG L. Active control of flow-induced acoustic resonance through surface perturbation[J]. AIAA Journal, 2012, 50(11):2566-2573.
[63] KUSUMOTO M, YOKOYAMA H, ANGLAND D, et al. Control of aerodynamic noise from cascade of flat plates by plasma actuators[J]. Transactions of the Japan Society of Mechanical Engineers, 2017, 83:1-16.
[64] THOMAS R H, CHOUDHARI M M, JOSLIN R D. Flow and noise control:Review and assessment of future directions:NASA/TM-2002-21163[R]. Washington, D.C.:NASA, 2002.
[65] 李磊, 孙晓峰. 推进动力系统燃烧不稳定性产生的机理、预测及控制方法[J]. 推进技术, 2010, 31(6):710-720. LI L, SUN X F. Mechanism, prediction and control method of combustion instability in propulsion system[J]. Journal of Propulsion Technology, 2010, 31(6):710-720(in Chinese).
[66] 孙晓峰, 孙大坤. 高速叶轮机流动稳定性[M]. 北京:国防工业出版社, 2018:10-12. SUN X F, SUN D K. Internal flow stability in high-speed turbomachinery[M]. Beijing:National Defense Industry Press, 2018:10-12(in Chinese).
[67] PARKER R, SMITH N, STONEMAN S. The use of passive absorption to prevent acoustic resonances in flow systems[C]//Proceedings of the 11th Australasian Fluid Mechanics Conference, 1992:1245-1248.
[68] DENG X, JIANG Y, MAO M, et al. Developing hybrid cell-edge and cell-node dissipative compact scheme for complex geometry flows[J]. Science China Technological Sciences, 2013, 56(10):2361-2369.
[69] MAO M L, JIANG Y, DENG X G, et al. Noise prediction in subsonic flow using seventh-order dissipative compact scheme on curvilinear mesh[J]. Advances in Applied Mathematics and Mechanics, 2016, 8(2):236-256.
[70] ZHANG L, WEI L, LIXIN H, et al. A class of hybrid DG/FV methods for conservation laws I:Basic formulation and one-dimensional systems[J]. Journal of Computational Physics, 2012, 231(4):1081-1103.
[71] ZHANG L, LIU W, LI M, et al. A class of DG/FV hybrid schemes for conservation law IV:2D viscous flows and implicit algorithm for steady cases[J]. Computers & Fluids, 2014, 97:110-125.
[72] DENG X G, MAO M L, TU G H, et al. High-order and high accurate CFD methods and their applications for complex grid problems[J]. Communications in Computational Physics, 2012, 11(4):1081-1102.
文章导航

/