复杂曲面零部件高性能表面加工技术专栏

磁力研磨法去除燃油喷嘴积碳的试验研究

  • 徐会 ,
  • 康仁科 ,
  • 陈燕
展开
  • 1. 大连理工大学 精密与特种加工教育部重点实验室, 大连 116024;
    2. 辽宁科技大学 机械工程与自动化学院, 鞍山 114051

收稿日期: 2019-09-16

  修回日期: 2019-10-08

  网络出版日期: 2019-11-20

基金资助

国家自然科学基金(51775258);辽宁省自然科学基金重点项目(20170540458);精密与特种加工教育部重点实验室基金(B201703)

Experimental study on removing carbon from fuel nozzles by magnetic grinding

  • XU Hui ,
  • KANG Renke ,
  • CHEN Yan
Expand
  • 1. Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116024, China;
    2. School of Mechanical Engineering & Automation, University of Science and Technology LiaoNing, Anshan 114051, China

Received date: 2019-09-16

  Revised date: 2019-10-08

  Online published: 2019-11-20

Supported by

National Natural Science Foundation of China (51775258); Key Project of Natural Science Foundation of Liaoning Province (20170540458); Key Laboratory of Precision and Special Processing of Ministry of Education (B201703)

摘要

针对燃油喷嘴大修再制造中积碳难去除的问题。利用扫描电子显微镜(SEM)分析喷嘴表面积碳的微观形貌和成分组成,为磁力研磨技术去除积碳方法的确定和工艺研究奠定基础。从旋转磁场的产生原理、磁针在磁场中受力和磁针在磁场中运动三方面综合分析了磁力研磨法的材料去除机理。采用电磁研磨装置对喷嘴进行积碳去除试验,运用响应面分析法分析旋转磁场转速、磁针的型号尺寸和研磨时间的交互作用对材料去除量和表面粗糙度的影响规律,确定试验的最佳工艺参数。最优的工艺参数为:磁针型号尺寸Ø0.8 mm×5 mm,旋转磁场转速1 000 r/min,研磨时间40 min。通过微观形貌的观测以及表面应力检测分析,综合评价研磨后的喷嘴表面质量。结果表明,研磨后的喷嘴表面积碳基本去除,表面光滑,残余应力明显下降,金相组织完好。经过专业测试,研磨后的残余积碳小于技术要求规定值。采用磁力研磨技术,可以有效去除燃油喷嘴表面积碳,去除效率高,技术环保,满足绿色再制造的要求。

本文引用格式

徐会 , 康仁科 , 陈燕 . 磁力研磨法去除燃油喷嘴积碳的试验研究[J]. 航空学报, 2020 , 41(2) : 623505 -623505 . DOI: 10.7527/S1000-6893.2019.23505

Abstract

This paper focuses on the problem of removing carbon deposition from a flame nozzle in the remanufacturing process. The magnetic needle grinding technology is selected as the method to remove carbon deposition due to its micro topography and components analyzed by Scanning Electron Microscope (SEM). Based on the removing process, an electromagnetic grinding equipment is chosen to conduct the removing test. To find the optimal process parameters for the test, a response surface analysis is adopted to analyze the influence law on the removal amount and surface roughness by the interactions between every two of the three following parameters, including rotational speed of rotating magnetic field, needle type, and grinding time. By comprehensively considering the test results, the optimal parameters can be obtained at the rotational speed of 1 000 r/min, the needle type Ø0.8 mm×5 mm, and the grinding time 40 min. The surface quality of the nozzle can be evaluated by observing the micro topography and testing the surface stress. After grinding, the nozzle surface is smooth with little carbon deposition, and the metallographic structure is in good condition with significant decrease of residual stress.Professional tests show that the remaining carbon deposition amount on the nozzle surface is less than the specified value required by the technology. The magnetic needle grinding technology, which can effectively remove carbon deposition off the flame nozzle with high efficiency, meeting the requirements of environmental friendliness and green remanufacturing.

参考文献

[1] 徐滨士. 新时代中国特色再制造的创新发展[J]. 中国表面工程, 2018, 31(1):1-6. XU B S. Innovation and development of remanufacturing with Chinese characteristics for a new era[J]. China Surface Engineering, 2018, 31(1):1-6(in Chinese).
[2] 贾卫. 某战斗机中某些零部件再制造的清洗工艺研究[D]. 大连:大连理工大学, 2015:2-10. JIA W. The study of the remanufacturing cleaning technology for a fighter's parts[D]. Dalian:Dalian University of Technology, 2015:2-10(in Chinese).
[3] 陈礼顺, 李思路, 程礼, 等. 基于齿廓修形的锥齿轮再制造技术[J]. 航空学报, 2018, 39(6):421856. CHEN L S, LI S L, CHENG L, et al. Bevel gear remanufacturing technology based on profile modification[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(6):421856(in Chinese).
[4] 郑汉东, 陈意, 李恩重, 等. 再制造产品服务系统生命周期评价建模及应用[J]. 中国机械工程, 2018, 29(18):2197-2203. ZHENG H D, CHEN Y, LI E Z, et al. LCA modeling and applications for RPSS[J]. China Mechanical Engineering. 2018, 29(18):2197-2203(in Chinese).
[5] 张振洲, 韩龙. 再制造零部件清洗技术[J]. 清洗世界, 2014, 30(2):42-45. ZHANG Z Z, HAN L. Application of component-remanufactured cleaning technology[J]. Clean World, 2014, 30(2):42-45(in Chinese).
[6] 王兴, 贾秀杰, 李方义, 等. 再制造发动机积碳形成机理研究[J]. 机械工程学报, 2017, 53(5):69-75. WANG X, JIA X J, LI F Y, et al. The research on formation mechanism of carbon deposition in remanufacturing engines[J]. Journal of Mechanical Engineering, 2017, 53(5):69-75(in Chinese).
[7] 张颖哲, 倪大明, LEE I, 等. 缩比发动机喷嘴热喷流噪声试验[J]. 航空学报, 2018, 39(12):122446. ZHANG Y Z, NI D M, LEE I, et al. Test on hot jet noise of scaled engine nozzle[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12):122446(in Chinese).
[8] 黄艳斐, 朱岳麟, 熊常健, 等. 航空发动机喷嘴结焦积碳的性质[J]. 北京航空航天大学学报, 2011, 37(6):753-756. HUANG Y F, ZHU Y L, XIONG C J, et al. The nature of the aeroengine nozzle coking carbon[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(6):753-756(in Chinese).
[9] 李范, 朱岳麟, 黄艳斐, 等. 发动机喷嘴表面化学改性抗结焦积碳[J]. 北京航空航天大学学报, 2014, 40(4):564-568. LI F, ZHU Y L, HUANG Y F, et al. Anti-coking performance of nozzle material's surface chemical modification[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(4):564-568(in Chinese).
[10] 周传强, 韩冰, 肖春芳, 等. 磁性磨粒辅助磁力研磨的应用研究[J]. 表面技术, 2019, 48(3):275-282. ZHOU C Q, HAN B, XIAO C F, et al. Application of magnetic abrasive particle aided magnetic needles grinding[J]. Surface Technology, 2019, 48(3):275-282(in Chinese).
[11] 杨海吉, 韩冰, 陈燕, 等. 自旋转磁极在合金管内表面精密抛光中的应用[J]. 摩擦学学报, 2018, 38(2):189-195. YANG H J, HAN B, CHEN Y, et al. The application of rotating magnetic pole in the polishing of the inner surface of the alloy tube[J]. Tribology, 2018, 38(2):189-195(in Chinese).
[12] GUO J, KUM C W, AU K H, et al. New vibration-assisted magnetic abrasive polishing (VAMAP) method for microstructured surface finishing[J]. Optics Express, 2016, 24(12):13542.
[13] WU J Z, ZOU Y H, SUGIYAMA H. Study on ultra-precision magnetic abrasive finishing process using low frequency alternating magnetic field[J]. Journal of Magnetism and Magnetic Materials, 2015, 386:50-59.
[14] ZOU Y H, LIU J N, SHINMURA T. Study on internal magnetic field assisted finishing process using a magnetic machining jig for thick non-ferromagnetic tube[J]. Key Engineering Materials, 2011, 325(6):530-535.
[15] 陈燕, 曾加恒, 胡玉刚, 等.超声复合磁力研磨加工镍基合金GH4169异形管[J]. 中国表面工程, 2018, 31(6):118-124. CHEN Y, ZENG J H, HU Y G, et al. Ultrasonic assisted magnetic abrasive finishing special-shaped pipe of nickel based alloy GH4169[J]. China Surface Engineering, 2018, 31(6):118-124(in Chinese).
[16] ZHOU K, CHEN Y, DU Z W, et al. Surface integrity of titanium part by ultrasonic magnetic abrasive finishing[J]. The International Journal of Advanced Manufacturing Technology, 2015, 80(5-8):997-1005.
[17] KANG J, YAMAGUCHI H. Internal finishing of capillary tubes by magnetic abrasive finishing using a multiple pole-tip system[J]. Precision Engineering, 2012, 36(3):510-516.
[18] 洪旗, 史耀耀, 路丹妮, 等. 基于灰色关联分析和响应面法的复合材料缠绕成型多目标工艺参数优化[J]. 复合材料学报,2019,36(12):2822-2832. HONG Q, SHI Y Y, LU D N, et al. Multi-response parameter optimization for the composite tape winding process based on grey relational analysis and response surface methodology[J]. Acta Materiae Compositae Sinica,2019,36(12):2822-2832. (in Chinese).
[19] LEE Y H, WU K L, BAI C T, et al. Planetary motion combined with two-dimensional vibration-assisted magnetic abrasive finishing[J]. The International Journal of Advanced Manufacturing Technology, 2015, 76(9-12):1865-1877.
[20] WANG D, SHINMURA T, YAMAGUCHI H. Study of magnetic field assisted mechanochemical polishing process for inner surface of Si3N4 ceramic components:Finishing characteristics under wet finishing using distilled water[J]. International Journal of Machine Tools & Manufacture, 2004, 44(14):1547-1553.
[21] MULIK R S, PANDEY P M. Mechanism of surface finishing in ultrasonic-assisted magnetic abrasive finishing process[J]. Advanced Manufacturing Processes, 2010, 25(12):1418-1427.
[22] YAMAGUCHI H, SHINMURA T. Internal finishing process for alumina ceramic components by a magnetic field assisted finishing process[J]. Precision Engineering, 2004, 28(2):135-142.
文章导航

/