This paper focuses on the problem of removing carbon deposition from a flame nozzle in the remanufacturing process. The magnetic needle grinding technology is selected as the method to remove carbon deposition due to its micro topography and components analyzed by Scanning Electron Microscope (SEM). Based on the removing process, an electromagnetic grinding equipment is chosen to conduct the removing test. To find the optimal process parameters for the test, a response surface analysis is adopted to analyze the influence law on the removal amount and surface roughness by the interactions between every two of the three following parameters, including rotational speed of rotating magnetic field, needle type, and grinding time. By comprehensively considering the test results, the optimal parameters can be obtained at the rotational speed of 1 000 r/min, the needle type Ø0.8 mm×5 mm, and the grinding time 40 min. The surface quality of the nozzle can be evaluated by observing the micro topography and testing the surface stress. After grinding, the nozzle surface is smooth with little carbon deposition, and the metallographic structure is in good condition with significant decrease of residual stress.Professional tests show that the remaining carbon deposition amount on the nozzle surface is less than the specified value required by the technology. The magnetic needle grinding technology, which can effectively remove carbon deposition off the flame nozzle with high efficiency, meeting the requirements of environmental friendliness and green remanufacturing.
[1] 徐滨士. 新时代中国特色再制造的创新发展[J]. 中国表面工程, 2018, 31(1):1-6. XU B S. Innovation and development of remanufacturing with Chinese characteristics for a new era[J]. China Surface Engineering, 2018, 31(1):1-6(in Chinese).
[2] 贾卫. 某战斗机中某些零部件再制造的清洗工艺研究[D]. 大连:大连理工大学, 2015:2-10. JIA W. The study of the remanufacturing cleaning technology for a fighter's parts[D]. Dalian:Dalian University of Technology, 2015:2-10(in Chinese).
[3] 陈礼顺, 李思路, 程礼, 等. 基于齿廓修形的锥齿轮再制造技术[J]. 航空学报, 2018, 39(6):421856. CHEN L S, LI S L, CHENG L, et al. Bevel gear remanufacturing technology based on profile modification[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(6):421856(in Chinese).
[4] 郑汉东, 陈意, 李恩重, 等. 再制造产品服务系统生命周期评价建模及应用[J]. 中国机械工程, 2018, 29(18):2197-2203. ZHENG H D, CHEN Y, LI E Z, et al. LCA modeling and applications for RPSS[J]. China Mechanical Engineering. 2018, 29(18):2197-2203(in Chinese).
[5] 张振洲, 韩龙. 再制造零部件清洗技术[J]. 清洗世界, 2014, 30(2):42-45. ZHANG Z Z, HAN L. Application of component-remanufactured cleaning technology[J]. Clean World, 2014, 30(2):42-45(in Chinese).
[6] 王兴, 贾秀杰, 李方义, 等. 再制造发动机积碳形成机理研究[J]. 机械工程学报, 2017, 53(5):69-75. WANG X, JIA X J, LI F Y, et al. The research on formation mechanism of carbon deposition in remanufacturing engines[J]. Journal of Mechanical Engineering, 2017, 53(5):69-75(in Chinese).
[7] 张颖哲, 倪大明, LEE I, 等. 缩比发动机喷嘴热喷流噪声试验[J]. 航空学报, 2018, 39(12):122446. ZHANG Y Z, NI D M, LEE I, et al. Test on hot jet noise of scaled engine nozzle[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12):122446(in Chinese).
[8] 黄艳斐, 朱岳麟, 熊常健, 等. 航空发动机喷嘴结焦积碳的性质[J]. 北京航空航天大学学报, 2011, 37(6):753-756. HUANG Y F, ZHU Y L, XIONG C J, et al. The nature of the aeroengine nozzle coking carbon[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(6):753-756(in Chinese).
[9] 李范, 朱岳麟, 黄艳斐, 等. 发动机喷嘴表面化学改性抗结焦积碳[J]. 北京航空航天大学学报, 2014, 40(4):564-568. LI F, ZHU Y L, HUANG Y F, et al. Anti-coking performance of nozzle material's surface chemical modification[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(4):564-568(in Chinese).
[10] 周传强, 韩冰, 肖春芳, 等. 磁性磨粒辅助磁力研磨的应用研究[J]. 表面技术, 2019, 48(3):275-282. ZHOU C Q, HAN B, XIAO C F, et al. Application of magnetic abrasive particle aided magnetic needles grinding[J]. Surface Technology, 2019, 48(3):275-282(in Chinese).
[11] 杨海吉, 韩冰, 陈燕, 等. 自旋转磁极在合金管内表面精密抛光中的应用[J]. 摩擦学学报, 2018, 38(2):189-195. YANG H J, HAN B, CHEN Y, et al. The application of rotating magnetic pole in the polishing of the inner surface of the alloy tube[J]. Tribology, 2018, 38(2):189-195(in Chinese).
[12] GUO J, KUM C W, AU K H, et al. New vibration-assisted magnetic abrasive polishing (VAMAP) method for microstructured surface finishing[J]. Optics Express, 2016, 24(12):13542.
[13] WU J Z, ZOU Y H, SUGIYAMA H. Study on ultra-precision magnetic abrasive finishing process using low frequency alternating magnetic field[J]. Journal of Magnetism and Magnetic Materials, 2015, 386:50-59.
[14] ZOU Y H, LIU J N, SHINMURA T. Study on internal magnetic field assisted finishing process using a magnetic machining jig for thick non-ferromagnetic tube[J]. Key Engineering Materials, 2011, 325(6):530-535.
[15] 陈燕, 曾加恒, 胡玉刚, 等.超声复合磁力研磨加工镍基合金GH4169异形管[J]. 中国表面工程, 2018, 31(6):118-124. CHEN Y, ZENG J H, HU Y G, et al. Ultrasonic assisted magnetic abrasive finishing special-shaped pipe of nickel based alloy GH4169[J]. China Surface Engineering, 2018, 31(6):118-124(in Chinese).
[16] ZHOU K, CHEN Y, DU Z W, et al. Surface integrity of titanium part by ultrasonic magnetic abrasive finishing[J]. The International Journal of Advanced Manufacturing Technology, 2015, 80(5-8):997-1005.
[17] KANG J, YAMAGUCHI H. Internal finishing of capillary tubes by magnetic abrasive finishing using a multiple pole-tip system[J]. Precision Engineering, 2012, 36(3):510-516.
[18] 洪旗, 史耀耀, 路丹妮, 等. 基于灰色关联分析和响应面法的复合材料缠绕成型多目标工艺参数优化[J]. 复合材料学报,2019,36(12):2822-2832. HONG Q, SHI Y Y, LU D N, et al. Multi-response parameter optimization for the composite tape winding process based on grey relational analysis and response surface methodology[J]. Acta Materiae Compositae Sinica,2019,36(12):2822-2832. (in Chinese).
[19] LEE Y H, WU K L, BAI C T, et al. Planetary motion combined with two-dimensional vibration-assisted magnetic abrasive finishing[J]. The International Journal of Advanced Manufacturing Technology, 2015, 76(9-12):1865-1877.
[20] WANG D, SHINMURA T, YAMAGUCHI H. Study of magnetic field assisted mechanochemical polishing process for inner surface of Si3N4 ceramic components:Finishing characteristics under wet finishing using distilled water[J]. International Journal of Machine Tools & Manufacture, 2004, 44(14):1547-1553.
[21] MULIK R S, PANDEY P M. Mechanism of surface finishing in ultrasonic-assisted magnetic abrasive finishing process[J]. Advanced Manufacturing Processes, 2010, 25(12):1418-1427.
[22] YAMAGUCHI H, SHINMURA T. Internal finishing process for alumina ceramic components by a magnetic field assisted finishing process[J]. Precision Engineering, 2004, 28(2):135-142.