新能源飞行器技术专栏

太阳能无人机能源系统的关键技术与发展趋势

  • 朱立宏 ,
  • 孙国瑞 ,
  • 呼文韬 ,
  • 李钏 ,
  • 付增英 ,
  • 于智航 ,
  • 刘正新
展开
  • 1. 中国电子科技集团公司第十八研究所, 天津 300384;
    2. 中国科学院 上海微系统与信息技术研究所, 上海 200050

收稿日期: 2019-09-18

  修回日期: 2019-11-22

  网络出版日期: 2019-11-20

Key technology and development trend of energy system in solar powered unmanned aerial vehicles

  • ZHU Lihong ,
  • SUN Guorui ,
  • HU Wentao ,
  • LI Chuan ,
  • FU Zengying ,
  • YU Zhihang ,
  • LIU Zhengxin
Expand
  • 1. Tianjin Institute of Power Sources, Tianjin 300384, China;
    2. Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China

Received date: 2019-09-18

  Revised date: 2019-11-22

  Online published: 2019-11-20

摘要

作为探索临近空间领域的新兴飞行器,太阳能无人机(SUAV)在性能、技术及任务航时均呈现出不同于传统飞行器的新特点。其中,太阳能无人机能源系统的比能量、比功率是影响飞机整体性能的核心因素。因此,本文首先对太阳能无人机的太阳电池、储能电池的发展现状进行了阐述,然后针对能量获取多元化、能源系统管理高效化、能源载荷一体化方向对太阳能无人机能源系统的未来发展趋势进行了展望。

本文引用格式

朱立宏 , 孙国瑞 , 呼文韬 , 李钏 , 付增英 , 于智航 , 刘正新 . 太阳能无人机能源系统的关键技术与发展趋势[J]. 航空学报, 2020 , 41(3) : 623503 -623503 . DOI: 10.7527/S1000-6893.2019.23503

Abstract

As a new aircraft for exploring near space, Solar powered Unmanned Aerial Vehicle (SUAV) shows new characteristics different from traditional aircraft in performance, technology, and endurance. The specific energy and specific power of SUAV occupy important positions in aircraft performance. In order to carry out an in-depth research, this paper firstly elaborates the composition and key technologies of SUAV energy system and looks forward to the future research hotspots and development trends in the diversity of energy access, the high efficiency of energy management, and the integration of energy load.

参考文献

[1] 唐克, 冯宝龙, 谢保军, 等.临近空间飞行器开发利用现状与发展趋势[J]. 飞航导弹, 2012(11):44-48,96. TANG K, FENG B L, XIE B J, et al. Development and utilization status and develop trend of near-space vehicle[J]. Aerodynamic Missile Journal, 2012(11):44-48,96 (in Chinese).
[2] 袁立群, 黄良平. 国外临近空间超长航时无人机发展及应用情况综述[J]. 战术导弹技术, 2018(2):26-30. YUAN L Q, HUANG L P. The summarization of the development and application of near space super long endurance UAV in foreign country[J]. Tactical Missile Technology, 2018(2):26-30 (in Chinese).
[3] 李延平, 刘莉. 太阳能/氢能混合动力无人机及关键技术[J]. 飞航导弹, 2014(7):39-45. LI Y P, LIU L. Solar/hydrogen hybrid unmanned aerial vehicles and key technologies[J]. Aerodynamic Missile Journal, 2014(7):39-45 (in Chinese).
[4] 张健, 张德虎. 高空长航时太阳能无人机总体设计要点分析[J]. 航空学报, 2016, 37(S1):S1-S7. ZHANG J, ZHANG D H. Essentials of configuration design of HALE solar-powered UAVs[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(S1):S1-S7 (in Chinese).
[5] BOUCHER R J. History of solar flight[C]//20th Joint Propulsion Conference, 1984.
[6] 李晨飞, 姜鲁华. 临近空间长航时太阳能无人机研究现状及关键技术[J]. 中国基础科学, 2018(2):22-31. LI C F, JIANG L H. Research status and key technology of near space long endurance high altitude solar-powered unmanned air vehicle[J]. China Basic Science, 2018(2):22-31 (in Chinese).
[7] 陶于金. 临近空间超长航时太阳能无人机发展及关键技术[J]. 航空制造技术, 2016(18):26-30. TAO Y J. Development and key technology on near space long voyage solar unmanned aerial vehicle[J]. Aeronautical Manufacturing Technology, 2016(18):26-30 (in Chinese).
[8] NOLL T E, BROWN J M, PETERZ-DAVIS M E, et al. Investigation of the helios prototype aircraft mishap:NASA 23681-2199[R]. Washington, D.C.:NASA, 2004:225-236.
[9] RON L. Soaring on a solar impulse[J]. Aerospace America, 2009:32-36.
[10] ANDRÉ N, SIEGWART R, ENGEL W H. Design of solar powered airplanes for continuous flight[J]. Environmental Research, 2008:1093-1097.
[11] REINHARDT K C, LAMP T R, GEIS J W, et al. Solar-powered unmanned aerial vehicles[C]//Proceedings of the 31st Intersociety Energy Conversion Engineering Conference. Piscataway, NJ:IEEE Press, 1996:41-46.
[12] BALDOCK N, MOKHTARZADEH-DEHGHAN M R. A study of solar-powered, high-altitude unmanned aerial vehicles[J]. Aircraft Engineering and Aerospace Technology, 2006, 78(3):187-193.
[13] ZHANG W, LV S L, GUAN X Q. Application of lightweight materials in structure concept design of large-scale solar energy unmanned aerial vehicle[J]. IOP Conference Series:Materials Science and Engineering, 2017, 242:012009.
[14] JASHNANI S, SHAHOLIA P, KHAMKER A, et al. Preliminary design of solar powered unmanned aerial vehicle[J]. Applied Mechanics & Materials, 2012, 225:315-322.
[15] LI S, ZHOU W, WANG X. The development status and key technologies of solar powered unmanned air vehicle[J]. IOP Conference Series:Materials Science and Engineering, 2017, 187(1):012011.
[16] ROMEO G, FRULLA G, CESTINO E. Heliplat:Design,aerodynamic, structural analysis of long-endurance solar-powered stratospheric platform[J]. Journal of Aircraft, 2004, 41(6):1505-1520.
[17] CESTINO E. Design of solar high altitude long endurance aircraft for multi-payload and operations[J]. Aerospace Science and Technology, 2006, 10(6):541-550.
[18] RAJENDRAN P, SMITH H. Review of solar and battery power system development for solar-powered electric unmanned aerial vehicles[J]. Advanced Materials Research, 2015, 1125:641-647.
[19] 曲鹏, 王寅. 太阳能无人机电源系统的发展现状与展望[J]. 电源技术, 2015(4):864-870. QU P, WANG Y. Development status and prospect of solar power systems for UAVs[J]. Chinese Journal of Power Sources, 2015(4):864-870 (in Chinese).
[20] 张传军, 褚君浩. 薄膜太阳电池研究进展和挑战[J]. 中国电机工程学报, 2019, 39(9):2524-2531. ZHANG C J, CHU J H. Research progress and challenges of thin film solar cells[J]. Proceedings of the CSEE, 2019, 39(9):2524-2531 (in Chinese).
[21] UAS VISION. Microlink devices solar sheet powers airbus Zephyr S HAPS solar aircraft[DB/EL]. (2019-05-17)[2019-09-17].https://www.uasvision.com/2018/10/22/microlink-devices-solar-sheet-powers-airbus-zephyr-s-haps-solar-aircraft/.
[22] BAUHUIS G J, MULDER P, HAVERKAMP E J, et al. 26.1% thin-film GaAs solar cell using epitaxial lift-off[J]. Solar Energy Materials & Solar Cells, 2009, 93(9):1488-1491.
[23] GEELEN A V, HAGEMAN P R, BAUHUIS G J, et al. Epitaxial lift-off GaAs solar cell from a reusable GaAs substrate[J]. Materials Science and Engineering:B, 1997, 45(1-3):162-171.
[24] LEE K, ZIMMERMAN J D, XIAO X, et al. Reuse of GaAs substrates for epitaxial lift-off by employing protection layers[J]. Journal of Applied Physics, 2012, 111(3):033527.
[25] 潘振, 呼文韬, 王寅, 等. 适用于太阳能飞行器的单晶硅太阳电池[J]. 电源技术, 2016, 40(8):1722-1725. PAN Z, HU W T, WANG Y, et al. Monocrystalline Si solar cells suitable for solar aerial vehicle[J]. Chinese Journal of Power Sources, 2016, 40(8):1722-1725 (in Chinese).
[26] 邸明东, 周骏, 孙铁囤, 等. 基于P型晶体硅异质结太阳电池的结构设计与性能分析[J]. 太阳能学报, 2010, 31(10):1343-1348. DI M D, ZHOU J, SUN T T, et al. The constructer design and performance analyses of heterojunction solar cell based on c-Si(p) substrates by simulation[J]. Acta Energiae Solaris Sinica, 2010, 31(10):1343-1348 (in Chinese).
[27] 程雪梅, 孟凡英, 汪建强, 等. P型晶体硅异质结太阳电池光电特性模拟研究[J]. 太阳能学报, 2012, 33(9):1474-1479. CHENG X M, MENG F Y, WANG J Q, et al. Simulation of heterojunction solar cells based on p-type silicon wafer[J]. Acta Energiae Solaris Sinica, 2012, 33(9):1474-1479 (in Chinese).
[28] CENTURIONI E, IENCINELLA D. Role of front contact work function on amorphous silicon/crystalline silicon heterojunction solar cell performance[J]. IEEE Electron Device Letters, 2003, 24(3):177-179.
[29] JENSEN N, RAU U, HAUSNER R M, et al. Recombination mechanisms in amorphous silicon/crystalline silicon heterojunction solar cells[J]. Journal of Applied Physics, 2000, 87(5):2639.
[30] WANG W N, SCHIFF E. A. Polyaniline on crystalline silicon heterojunction solar cells[J]. Applied Physics Letters, 2001, 91(13):133504.
[31] NEITZERT H C, SPINILLO P, BELLONE S, et al. Investigation of the damage as induced by 1.7 MeV protons in an amorphous/crystalline silicon heterojunction solar cell[J]. Solar Energy Materials & Solar Cells, 2004, 83(4):435-446.
[32] 万文博, 蒲薇华, 艾德生. 锂硫电池最新研究进展[J]. 化学进展, 2013, 25(11):1830-1841. WAN W B, PU W H, AI D S. Research progress in lithium sulfur battery[J]. Progress in Chemistry, 2013, 25(11):1830-1841 (in Chinese).
[33] 傅焰鹏, 陈慧鑫, 杨勇. 锂离子电池硅纳米线负极材料研究[J]. 电化学, 2009(1):56-61. FU Y P, CHEN H X, YANG Y. Silicon nanowires as anode materials for lithium ion batteries[J]. Electrochemistry, 2009(1):56-61 (in Chinese).
[34] 朱炳杰, 杨宇丹, 杨希祥, 等. 太阳能飞行器能源昼夜闭环仿真分析[J]. 宇航学报, 2019,40(8):878-886. ZHU B J, YANG Y D, YANG X X, et al. Energy closed-loop simulation and analysis for solar powered aircraft round the clock[J]. Journal of Astronautics, 2019, 40(8):878-886 (in Chinese).
[35] 戴卫力, 费峻涛, 肖建康, 等. 无线电能传输技术综述及应用前景[J]. 电气技术, 2010(7):18-23. DAI W L, FEI J T, XIAO J K, et al. An overview and application prospect of wireless power transmission technology[J]. Electrical Engineering, 2010(7):18-23 (in Chinese).
[36] WILLIAM C B. The history of wireless power transmission[J]. Solar Energy, 1996, 56(1):3-21.
[37] 范兴明, 高琳琳, 莫小勇, 等. 无线电能传输技术的研究现状与应用综述[J]. 电工技术学报, 2019, 34(7):5-32. FAN X M, GAO L L, MO X Y, et al. Overview of research status and application of wireless power transmission technology[J]. Transactions of China Electrotechnical Society,2019, 34(7):5-32 (in Chinese).
[38] 张茂春, 王进华, 石亚伟. 无线电能传输技术综述[J]. 重庆工商大学学报(自然科学版), 2009, 26(5):75-78. ZHANG M C, WANG J H, SHI Y W. Review of the wireless power transmission technology[J]. Journal of Chongqing Technology and Business University(Natural Science Edition), 2009, 26(5):75-78 (in Chinese).
[39] LU F, ZHANG H, MI C. A review on the recent development of capacitive wireless power transfer technology[J]. Energies, 2017, 10(11):1752.
[40] 李维. 空间太阳能电站无线能量传输技术[J]. 国际太空, 2015, 15(1):63-69. LI W. Wireless energy transmission technology for space solar power station[J]. Space International, 2015, 15(1):63-69 (in Chinese).
[41] 赵慧, 张学, 刘明, 等. 实现无线传输能量效率最大化的功率控制新方法[J]. 计算机应用, 2013, 33(2):365-381. ZHAO H, ZHANG X, LIU M, et al. New power control scheme with maximum energy efficiency in wireless transmission[J]. Journal of Computer Applications, 2013, 33(2):365-381 (in Chinese).
[42] 张波, 疏许健, 黄润鸿. 感应和谐振无线电能传输技术的发展[J]. 电工技术学报, 2017, 32(18):9-23. ZHANG B, SHU X J, HUANG R H. The development of inductive and resonant wireless power transfer technology[J]. Transactions of China Electrotechnical Society, 2017, 32(18):9-23 (in Chinese).
[43] LU X, WANG P, NIYATO D, et al. Wireless charging technologies:Fundamentals, standards, and network applications[J]. IEEE Communications Surveys & Tutorials, 2016, 18(2):1413-1452.
[44] 唐亮, 仲元昌, 张成祥, 等. 激光无线传能关键技术研究现状及发展趋势[J]. 激光杂志, 2017(10):32-36. TANG L, ZHONG Y C, ZHANG C X, et al. Research situation and development trend of laser wireless power transmission key technology[J]. Laser Journal, 2017(10):32-36 (in Chinese).
[45] 金星,常浩,崔晓阳. 激光输能无人机的概念研究[J]. 航空学报, 2013, 34(9):2074-2080. JIN X, CHANG H, CUI X Y. Concept research of laser-motive UAV[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(9):2074-2080 (in Chinese).
[46] 周玮阳, 金科. 无人机远程激光充电技术的现状和发展[J]. 南京航空航天大学学报, 2013, 45(6):784-791. ZHOU W Y, JIN K. Status and trends of laser powered unmanned aerial vehicles[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2013, 45(6):784-791 (in Chinese).
[47] 崔子浩, 华文深, 李刚, 等. 无人机激光无线能量传输及跟踪瞄准方法研究[J]. 激光与红外, 2018, 48(3):275-279. CUI Z H, HUA W S, LI G, et al. Research of laser wireless power transmission for UAVs and its tracking pointing methods[J]. Laser & Infrared, 2018, 48(3):275-279 (in Chinese).
[48] 李志鹏, 张燕革, 艾勇, 等. 无人机激光跟踪与无线供能系统[J]. 激光技术, 2018, 42(3):22-26. LI Z P, ZHANG Y G, AI Y, et al. Laser tracking and wireless power supply system for unmanned aerial vehicles[J]. Laser Technology, 2018, 42(3):22-26 (in Chinese).
[49] 刘晓光, 华文深, 刘恂, 等. 激光供能无人机光伏接收器效率优化方法[J]. 红外与激光工程, 2016, 45(3):0306002. LIU X G, HUA W S, LIU X, et al. Methods to improve efficiency of photovoltaic receiver for laser powered unmanned aerial vehicle[J]. Infrared and Laser Engineering, 2016, 45(3):0306002 (in Chinese).
[50] CHEN Q, ZHANG D, ZHU D, et al. Design and experiment for realization of laser wireless power transmission for small unmanned aerial vehicles[C]//Applied Optics and Photonics China (AOPC2015), 2015.
[51] 康湛毓. 2.45 GHz高效率微带整流天线的研究[D]. 成都:电子科技大学, 2016. KANG Z Y. The research of 2.45 GHz high efficiency microstrip rectenna for microwave power transmission[D]. Chengdu:University of Electronic Science and Technology of China, 2016 (in Chinese).
[52] 李奥博. 无线能量传输系统中整流技术研究[D]. 上海:上海交通大学, 2012. LI A B. Research on rectifier technology for wireless power transmission system[D]. Shanghai:Shanghai Jiao Tong University, 2012 (in Chinese).
[53] 杨永穆. 用于无线能量传输的方向回溯天线研究[D]. 成都:电子科技大学, 2018. YANG Y M. The research of retrodirective array used in wireless power transfer[D]. Chengdu:University of Electronic Science and Technology of China, 2018 (in Chinese).
[54] 张灿, 张强. 微型飞行器微波电能传输系统研究综述[J]. 飞航导弹, 2014(5):18-21. ZHANG C, ZHANG Q. Summary of research on micro air vehicle microwave power transmission system[J]. Aerodynamic Missile Journal, 2014(5):18-21 (in Chinese).
[55] SHIMAMURA K, SAWAHARA H, ODA A, et al. Feasibility study of microwave wireless powered flight for micro air vehicles[J]. Wireless Power Transfer, 2017, 4(2):146-159.
[56] 胡斌, 时景立, 冯利军. 太阳能无人机能源管理器研究与设计[J]. 电源技术, 2015, 39(10):2161-2165. HU B, SHI J L, FENG L J. Research and design of power management system of solar unmanned aerial vehicle[J]. Chinese Journal of Power Sources, 2015, 39(10):2161-2165 (in Chinese).
[57] 赵争鸣. 太阳能光伏发电最大功率点跟踪技术[M]. 北京:电子工业出版社, 2012. ZHAO Z M. Maximum power point tracking technology for photovoltaic power generation[M]. Beijing:Electronic Industry Press, 2012 (in Chinese).
[58] 呼文韬. 太阳能飞行器太阳能能源系统的设计与实现[D].天津:天津大学, 2013. HU W T. Design and implementation of power system for solar energy air vehicle[D].Tianjin:Tianjin University, 2013 (in Chinese).
[59] 陆运章, 郭进, 程文进, 等. 太阳能无人机能源控制器研究与设计[J]. 电子工业专用设备, 2017(3):45-50. LU Y Z, GUO J, CHENG W J, et al. Research and design of power management controller of solar unmanned aerial vehicle[J]. Equipment for Electronic Products Manufacturing, 2017(3):45-50 (in Chinese).
[60] AMMANN M J, MCEVOY P, NARBUDOWICZ A, et al. Circularly polarised solar antenna for airborne communication nodes[J]. Electronics Letters, 2015, 51(9):667-669.
[61] CONCHUBHAIR O, MCEVOY P, AMMANN M J. Integration of antenna array with multicrystalline silicon solar cell[J]. IEEE Antennas and Wireless Propagation Letters, 2015(14):1231-1234.
[62] ARAKI K, SUZUKI Y, SUZUKI R, et al. Microstrip antenna with solar cells for microsatellites[J]. Electronics Letters, 1995, 31(1):5-6.
[63] HASSAN M A, KISHK A A. Optically transparent reflect array antenna design integrated with solar cells[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(5):1700-1712.
[64] AN W, XU S, YANG F, et al. A Ka-band reflect array antenna integrated with solar cells[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(11):5539-5546.
[65] SHYNU S V, ONS M J R, MCEVOY P, et al. Integration of microstrip patch antenna with polycrystalline silicon solar cell[J]. IEEE Transactions on Antennas and Propagation, 2009, 57(12):3969-3972.
[66] TA S X, LEE J J, PARK I. Solar-cell metasurface-integrated circularly polarized antenna with 100% insolation[J]. IEEE Antennas and Wireless Propagation Letters, 2017,16:2675-2678.
[67] O'CONCHUBHAIR O, MCEVOY P,AMMANN M J. Dye-sensitized solar cell antenna[J]. IEEE Antennas Wireless Propagation Letters, 2017(16):352-355.
文章导航

/