[1] 唐克, 冯宝龙, 谢保军, 等.临近空间飞行器开发利用现状与发展趋势[J]. 飞航导弹, 2012(11):44-48,96. TANG K, FENG B L, XIE B J, et al. Development and utilization status and develop trend of near-space vehicle[J]. Aerodynamic Missile Journal, 2012(11):44-48,96 (in Chinese).
[2] 袁立群, 黄良平. 国外临近空间超长航时无人机发展及应用情况综述[J]. 战术导弹技术, 2018(2):26-30. YUAN L Q, HUANG L P. The summarization of the development and application of near space super long endurance UAV in foreign country[J]. Tactical Missile Technology, 2018(2):26-30 (in Chinese).
[3] 李延平, 刘莉. 太阳能/氢能混合动力无人机及关键技术[J]. 飞航导弹, 2014(7):39-45. LI Y P, LIU L. Solar/hydrogen hybrid unmanned aerial vehicles and key technologies[J]. Aerodynamic Missile Journal, 2014(7):39-45 (in Chinese).
[4] 张健, 张德虎. 高空长航时太阳能无人机总体设计要点分析[J]. 航空学报, 2016, 37(S1):S1-S7. ZHANG J, ZHANG D H. Essentials of configuration design of HALE solar-powered UAVs[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(S1):S1-S7 (in Chinese).
[5] BOUCHER R J. History of solar flight[C]//20th Joint Propulsion Conference, 1984.
[6] 李晨飞, 姜鲁华. 临近空间长航时太阳能无人机研究现状及关键技术[J]. 中国基础科学, 2018(2):22-31. LI C F, JIANG L H. Research status and key technology of near space long endurance high altitude solar-powered unmanned air vehicle[J]. China Basic Science, 2018(2):22-31 (in Chinese).
[7] 陶于金. 临近空间超长航时太阳能无人机发展及关键技术[J]. 航空制造技术, 2016(18):26-30. TAO Y J. Development and key technology on near space long voyage solar unmanned aerial vehicle[J]. Aeronautical Manufacturing Technology, 2016(18):26-30 (in Chinese).
[8] NOLL T E, BROWN J M, PETERZ-DAVIS M E, et al. Investigation of the helios prototype aircraft mishap:NASA 23681-2199[R]. Washington, D.C.:NASA, 2004:225-236.
[9] RON L. Soaring on a solar impulse[J]. Aerospace America, 2009:32-36.
[10] ANDRÉ N, SIEGWART R, ENGEL W H. Design of solar powered airplanes for continuous flight[J]. Environmental Research, 2008:1093-1097.
[11] REINHARDT K C, LAMP T R, GEIS J W, et al. Solar-powered unmanned aerial vehicles[C]//Proceedings of the 31st Intersociety Energy Conversion Engineering Conference. Piscataway, NJ:IEEE Press, 1996:41-46.
[12] BALDOCK N, MOKHTARZADEH-DEHGHAN M R. A study of solar-powered, high-altitude unmanned aerial vehicles[J]. Aircraft Engineering and Aerospace Technology, 2006, 78(3):187-193.
[13] ZHANG W, LV S L, GUAN X Q. Application of lightweight materials in structure concept design of large-scale solar energy unmanned aerial vehicle[J]. IOP Conference Series:Materials Science and Engineering, 2017, 242:012009.
[14] JASHNANI S, SHAHOLIA P, KHAMKER A, et al. Preliminary design of solar powered unmanned aerial vehicle[J]. Applied Mechanics & Materials, 2012, 225:315-322.
[15] LI S, ZHOU W, WANG X. The development status and key technologies of solar powered unmanned air vehicle[J]. IOP Conference Series:Materials Science and Engineering, 2017, 187(1):012011.
[16] ROMEO G, FRULLA G, CESTINO E. Heliplat:Design,aerodynamic, structural analysis of long-endurance solar-powered stratospheric platform[J]. Journal of Aircraft, 2004, 41(6):1505-1520.
[17] CESTINO E. Design of solar high altitude long endurance aircraft for multi-payload and operations[J]. Aerospace Science and Technology, 2006, 10(6):541-550.
[18] RAJENDRAN P, SMITH H. Review of solar and battery power system development for solar-powered electric unmanned aerial vehicles[J]. Advanced Materials Research, 2015, 1125:641-647.
[19] 曲鹏, 王寅. 太阳能无人机电源系统的发展现状与展望[J]. 电源技术, 2015(4):864-870. QU P, WANG Y. Development status and prospect of solar power systems for UAVs[J]. Chinese Journal of Power Sources, 2015(4):864-870 (in Chinese).
[20] 张传军, 褚君浩. 薄膜太阳电池研究进展和挑战[J]. 中国电机工程学报, 2019, 39(9):2524-2531. ZHANG C J, CHU J H. Research progress and challenges of thin film solar cells[J]. Proceedings of the CSEE, 2019, 39(9):2524-2531 (in Chinese).
[21] UAS VISION. Microlink devices solar sheet powers airbus Zephyr S HAPS solar aircraft[DB/EL]. (2019-05-17)[2019-09-17].https://www.uasvision.com/2018/10/22/microlink-devices-solar-sheet-powers-airbus-zephyr-s-haps-solar-aircraft/.
[22] BAUHUIS G J, MULDER P, HAVERKAMP E J, et al. 26.1% thin-film GaAs solar cell using epitaxial lift-off[J]. Solar Energy Materials & Solar Cells, 2009, 93(9):1488-1491.
[23] GEELEN A V, HAGEMAN P R, BAUHUIS G J, et al. Epitaxial lift-off GaAs solar cell from a reusable GaAs substrate[J]. Materials Science and Engineering:B, 1997, 45(1-3):162-171.
[24] LEE K, ZIMMERMAN J D, XIAO X, et al. Reuse of GaAs substrates for epitaxial lift-off by employing protection layers[J]. Journal of Applied Physics, 2012, 111(3):033527.
[25] 潘振, 呼文韬, 王寅, 等. 适用于太阳能飞行器的单晶硅太阳电池[J]. 电源技术, 2016, 40(8):1722-1725. PAN Z, HU W T, WANG Y, et al. Monocrystalline Si solar cells suitable for solar aerial vehicle[J]. Chinese Journal of Power Sources, 2016, 40(8):1722-1725 (in Chinese).
[26] 邸明东, 周骏, 孙铁囤, 等. 基于P型晶体硅异质结太阳电池的结构设计与性能分析[J]. 太阳能学报, 2010, 31(10):1343-1348. DI M D, ZHOU J, SUN T T, et al. The constructer design and performance analyses of heterojunction solar cell based on c-Si(p) substrates by simulation[J]. Acta Energiae Solaris Sinica, 2010, 31(10):1343-1348 (in Chinese).
[27] 程雪梅, 孟凡英, 汪建强, 等. P型晶体硅异质结太阳电池光电特性模拟研究[J]. 太阳能学报, 2012, 33(9):1474-1479. CHENG X M, MENG F Y, WANG J Q, et al. Simulation of heterojunction solar cells based on p-type silicon wafer[J]. Acta Energiae Solaris Sinica, 2012, 33(9):1474-1479 (in Chinese).
[28] CENTURIONI E, IENCINELLA D. Role of front contact work function on amorphous silicon/crystalline silicon heterojunction solar cell performance[J]. IEEE Electron Device Letters, 2003, 24(3):177-179.
[29] JENSEN N, RAU U, HAUSNER R M, et al. Recombination mechanisms in amorphous silicon/crystalline silicon heterojunction solar cells[J]. Journal of Applied Physics, 2000, 87(5):2639.
[30] WANG W N, SCHIFF E. A. Polyaniline on crystalline silicon heterojunction solar cells[J]. Applied Physics Letters, 2001, 91(13):133504.
[31] NEITZERT H C, SPINILLO P, BELLONE S, et al. Investigation of the damage as induced by 1.7 MeV protons in an amorphous/crystalline silicon heterojunction solar cell[J]. Solar Energy Materials & Solar Cells, 2004, 83(4):435-446.
[32] 万文博, 蒲薇华, 艾德生. 锂硫电池最新研究进展[J]. 化学进展, 2013, 25(11):1830-1841. WAN W B, PU W H, AI D S. Research progress in lithium sulfur battery[J]. Progress in Chemistry, 2013, 25(11):1830-1841 (in Chinese).
[33] 傅焰鹏, 陈慧鑫, 杨勇. 锂离子电池硅纳米线负极材料研究[J]. 电化学, 2009(1):56-61. FU Y P, CHEN H X, YANG Y. Silicon nanowires as anode materials for lithium ion batteries[J]. Electrochemistry, 2009(1):56-61 (in Chinese).
[34] 朱炳杰, 杨宇丹, 杨希祥, 等. 太阳能飞行器能源昼夜闭环仿真分析[J]. 宇航学报, 2019,40(8):878-886. ZHU B J, YANG Y D, YANG X X, et al. Energy closed-loop simulation and analysis for solar powered aircraft round the clock[J]. Journal of Astronautics, 2019, 40(8):878-886 (in Chinese).
[35] 戴卫力, 费峻涛, 肖建康, 等. 无线电能传输技术综述及应用前景[J]. 电气技术, 2010(7):18-23. DAI W L, FEI J T, XIAO J K, et al. An overview and application prospect of wireless power transmission technology[J]. Electrical Engineering, 2010(7):18-23 (in Chinese).
[36] WILLIAM C B. The history of wireless power transmission[J]. Solar Energy, 1996, 56(1):3-21.
[37] 范兴明, 高琳琳, 莫小勇, 等. 无线电能传输技术的研究现状与应用综述[J]. 电工技术学报, 2019, 34(7):5-32. FAN X M, GAO L L, MO X Y, et al. Overview of research status and application of wireless power transmission technology[J]. Transactions of China Electrotechnical Society,2019, 34(7):5-32 (in Chinese).
[38] 张茂春, 王进华, 石亚伟. 无线电能传输技术综述[J]. 重庆工商大学学报(自然科学版), 2009, 26(5):75-78. ZHANG M C, WANG J H, SHI Y W. Review of the wireless power transmission technology[J]. Journal of Chongqing Technology and Business University(Natural Science Edition), 2009, 26(5):75-78 (in Chinese).
[39] LU F, ZHANG H, MI C. A review on the recent development of capacitive wireless power transfer technology[J]. Energies, 2017, 10(11):1752.
[40] 李维. 空间太阳能电站无线能量传输技术[J]. 国际太空, 2015, 15(1):63-69. LI W. Wireless energy transmission technology for space solar power station[J]. Space International, 2015, 15(1):63-69 (in Chinese).
[41] 赵慧, 张学, 刘明, 等. 实现无线传输能量效率最大化的功率控制新方法[J]. 计算机应用, 2013, 33(2):365-381. ZHAO H, ZHANG X, LIU M, et al. New power control scheme with maximum energy efficiency in wireless transmission[J]. Journal of Computer Applications, 2013, 33(2):365-381 (in Chinese).
[42] 张波, 疏许健, 黄润鸿. 感应和谐振无线电能传输技术的发展[J]. 电工技术学报, 2017, 32(18):9-23. ZHANG B, SHU X J, HUANG R H. The development of inductive and resonant wireless power transfer technology[J]. Transactions of China Electrotechnical Society, 2017, 32(18):9-23 (in Chinese).
[43] LU X, WANG P, NIYATO D, et al. Wireless charging technologies:Fundamentals, standards, and network applications[J]. IEEE Communications Surveys & Tutorials, 2016, 18(2):1413-1452.
[44] 唐亮, 仲元昌, 张成祥, 等. 激光无线传能关键技术研究现状及发展趋势[J]. 激光杂志, 2017(10):32-36. TANG L, ZHONG Y C, ZHANG C X, et al. Research situation and development trend of laser wireless power transmission key technology[J]. Laser Journal, 2017(10):32-36 (in Chinese).
[45] 金星,常浩,崔晓阳. 激光输能无人机的概念研究[J]. 航空学报, 2013, 34(9):2074-2080. JIN X, CHANG H, CUI X Y. Concept research of laser-motive UAV[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(9):2074-2080 (in Chinese).
[46] 周玮阳, 金科. 无人机远程激光充电技术的现状和发展[J]. 南京航空航天大学学报, 2013, 45(6):784-791. ZHOU W Y, JIN K. Status and trends of laser powered unmanned aerial vehicles[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2013, 45(6):784-791 (in Chinese).
[47] 崔子浩, 华文深, 李刚, 等. 无人机激光无线能量传输及跟踪瞄准方法研究[J]. 激光与红外, 2018, 48(3):275-279. CUI Z H, HUA W S, LI G, et al. Research of laser wireless power transmission for UAVs and its tracking pointing methods[J]. Laser & Infrared, 2018, 48(3):275-279 (in Chinese).
[48] 李志鹏, 张燕革, 艾勇, 等. 无人机激光跟踪与无线供能系统[J]. 激光技术, 2018, 42(3):22-26. LI Z P, ZHANG Y G, AI Y, et al. Laser tracking and wireless power supply system for unmanned aerial vehicles[J]. Laser Technology, 2018, 42(3):22-26 (in Chinese).
[49] 刘晓光, 华文深, 刘恂, 等. 激光供能无人机光伏接收器效率优化方法[J]. 红外与激光工程, 2016, 45(3):0306002. LIU X G, HUA W S, LIU X, et al. Methods to improve efficiency of photovoltaic receiver for laser powered unmanned aerial vehicle[J]. Infrared and Laser Engineering, 2016, 45(3):0306002 (in Chinese).
[50] CHEN Q, ZHANG D, ZHU D, et al. Design and experiment for realization of laser wireless power transmission for small unmanned aerial vehicles[C]//Applied Optics and Photonics China (AOPC2015), 2015.
[51] 康湛毓. 2.45 GHz高效率微带整流天线的研究[D]. 成都:电子科技大学, 2016. KANG Z Y. The research of 2.45 GHz high efficiency microstrip rectenna for microwave power transmission[D]. Chengdu:University of Electronic Science and Technology of China, 2016 (in Chinese).
[52] 李奥博. 无线能量传输系统中整流技术研究[D]. 上海:上海交通大学, 2012. LI A B. Research on rectifier technology for wireless power transmission system[D]. Shanghai:Shanghai Jiao Tong University, 2012 (in Chinese).
[53] 杨永穆. 用于无线能量传输的方向回溯天线研究[D]. 成都:电子科技大学, 2018. YANG Y M. The research of retrodirective array used in wireless power transfer[D]. Chengdu:University of Electronic Science and Technology of China, 2018 (in Chinese).
[54] 张灿, 张强. 微型飞行器微波电能传输系统研究综述[J]. 飞航导弹, 2014(5):18-21. ZHANG C, ZHANG Q. Summary of research on micro air vehicle microwave power transmission system[J]. Aerodynamic Missile Journal, 2014(5):18-21 (in Chinese).
[55] SHIMAMURA K, SAWAHARA H, ODA A, et al. Feasibility study of microwave wireless powered flight for micro air vehicles[J]. Wireless Power Transfer, 2017, 4(2):146-159.
[56] 胡斌, 时景立, 冯利军. 太阳能无人机能源管理器研究与设计[J]. 电源技术, 2015, 39(10):2161-2165. HU B, SHI J L, FENG L J. Research and design of power management system of solar unmanned aerial vehicle[J]. Chinese Journal of Power Sources, 2015, 39(10):2161-2165 (in Chinese).
[57] 赵争鸣. 太阳能光伏发电最大功率点跟踪技术[M]. 北京:电子工业出版社, 2012. ZHAO Z M. Maximum power point tracking technology for photovoltaic power generation[M]. Beijing:Electronic Industry Press, 2012 (in Chinese).
[58] 呼文韬. 太阳能飞行器太阳能能源系统的设计与实现[D].天津:天津大学, 2013. HU W T. Design and implementation of power system for solar energy air vehicle[D].Tianjin:Tianjin University, 2013 (in Chinese).
[59] 陆运章, 郭进, 程文进, 等. 太阳能无人机能源控制器研究与设计[J]. 电子工业专用设备, 2017(3):45-50. LU Y Z, GUO J, CHENG W J, et al. Research and design of power management controller of solar unmanned aerial vehicle[J]. Equipment for Electronic Products Manufacturing, 2017(3):45-50 (in Chinese).
[60] AMMANN M J, MCEVOY P, NARBUDOWICZ A, et al. Circularly polarised solar antenna for airborne communication nodes[J]. Electronics Letters, 2015, 51(9):667-669.
[61] CONCHUBHAIR O, MCEVOY P, AMMANN M J. Integration of antenna array with multicrystalline silicon solar cell[J]. IEEE Antennas and Wireless Propagation Letters, 2015(14):1231-1234.
[62] ARAKI K, SUZUKI Y, SUZUKI R, et al. Microstrip antenna with solar cells for microsatellites[J]. Electronics Letters, 1995, 31(1):5-6.
[63] HASSAN M A, KISHK A A. Optically transparent reflect array antenna design integrated with solar cells[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(5):1700-1712.
[64] AN W, XU S, YANG F, et al. A Ka-band reflect array antenna integrated with solar cells[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(11):5539-5546.
[65] SHYNU S V, ONS M J R, MCEVOY P, et al. Integration of microstrip patch antenna with polycrystalline silicon solar cell[J]. IEEE Transactions on Antennas and Propagation, 2009, 57(12):3969-3972.
[66] TA S X, LEE J J, PARK I. Solar-cell metasurface-integrated circularly polarized antenna with 100% insolation[J]. IEEE Antennas and Wireless Propagation Letters, 2017,16:2675-2678.
[67] O'CONCHUBHAIR O, MCEVOY P,AMMANN M J. Dye-sensitized solar cell antenna[J]. IEEE Antennas Wireless Propagation Letters, 2017(16):352-355.