电子电气工程与控制

带有引诱角色的多飞行器协同最优制导方法

  • 王少博 ,
  • 郭杨 ,
  • 王仕成 ,
  • 刘志国 ,
  • 张帅
展开
  • 1. 火箭军工程大学 精确制导与仿真实验室, 西安 710025;
    2. 西北工业大学 航天学院, 西安 710072

收稿日期: 2019-08-23

  修回日期: 2019-10-08

  网络出版日期: 2019-11-20

基金资助

国家自然科学基金(61673386);中国博士后科学基金(2017M613201,2019T120944)

Cooperative optimal guidance method for multi-aircraft with luring role

  • WANG Shaobo ,
  • GUO Yang ,
  • WANG Shicheng ,
  • LIU Zhiguo ,
  • ZHANG Shuai
Expand
  • 1. Precision Guidance and Simulation Lab, Rocket Force University of Engineering, Xi'an 710025, China;
    2. School of Astronautics, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2019-08-23

  Revised date: 2019-10-08

  Online published: 2019-11-20

Supported by

National Natural Science Foundation of China (61673386);China Postdoctoral Science Foundation(2017M613201,2019T120944)

摘要

考虑我方高价值飞行器面临对方拦截器拦截时,发射两枚防御器对拦截器进行拦截的情形。针对对方拦截器采用扩展比例导引律,在4个飞行器均具有一阶线性动力学特性假设下,基于最优控制理论设计了能在拦截末端施加相对拦截角的显式协同制导律。显式协同制导律将高价值飞行器和两枚防御器三者的协同考虑在内,给出了三者最优控制输入的解析解。仿真结果表明,设计的制导律能使两防御器成功拦截敌方拦截器,且在拦截末端施加一个相对拦截角。通过与只考虑两防御器协同的隐式协同制导律进行比较,可发现显式的协同制导律在控制要求和能量消耗上,要优于隐式的协同制导律。此外,还验证了在不同发射条件下的协同制导律的稳定性。

本文引用格式

王少博 , 郭杨 , 王仕成 , 刘志国 , 张帅 . 带有引诱角色的多飞行器协同最优制导方法[J]. 航空学报, 2020 , 41(2) : 323402 -323402 . DOI: 10.7527/S1000-6893.2019.23402

Abstract

This paper considers the situation that our high-value aircraft launches two defender to intercept the interceptor when it is faced with interception by the other interceptor. Based on the optimal control theory, an explicit cooperative guidance law with relative interception angle at the end of interception is designed under the assumption that all four aircraft have first-order linear dynamic characteristics. The explicit cooperative guidance law takes into account the cooperation of high-value aircraft and two defenders, and gives the analytical solution of the optimal control input of the three objects. The simulation results show that the designed guidance law can make the two defenders intercept the interceptor successfully, and impose a relative interception angle at the end of the interception. By comparing with the implicit cooperative guidance law which only considers two defenders, the explicit cooperative guidance law is superior to the implicit cooperative guidance law in control requirements and energy consumption. In addition, the stability of the cooperative guidance law under different launching conditions is verified.

参考文献

[1] 姚郁, 郑天宇, 贺风华, 等. 飞行器末制导中的几个热点问题与挑战[J]. 航空学报, 2015, 36(8):2696-2716. YAO Y, ZHENG T Y, HE F H, et al. Several hot issues and challenges in terminal guidance of flight vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8):2696-2716(in Chinese).
[2] SHAFERMAN V, SHIMA T. Cooperative optimal guidance laws for imposing a relative intercept angle[J]. Journal of Guidance, Control, and Dynamics, 2015, 38(8):1395-1408.
[3] JEON I S, LEE J I, TAHK M J. Impact-time-control guidance law for anti-ship missiles[J]. IEEE Transactions on Control Systems Technology, 2006, 14(2):260-266.
[4] BOYELL L R. Defending a moving target against missile or torpedo attack[J]. IEEE Transactions on Aerospace and Electronic Systems, 1976, 12(4):522-526.
[5] BOYELL L R. Counterweapon aiming for defense of a moving target[J]. IEEE Transactions on Aerospace and Electronic Systems, 1980, 16(3):402-408.
[6] RATNOO A, SHIMA T. Line-of-sight interceptor guidance for defending an aircraft[J]. Journal of Guidance, Control, and Dynamics, 2011, 34(2):522-532.
[7] RATNOO A, SHIMA T. Guidance strategies against defended aerial targets[J]. Journal of Guidance, Control, and Dynamics, 2012, 35(4):1059-1068.
[8] YAMASAKI T, BALAKRISHNAN S N, TAKANO H. Modified command to line-of-sight intercept guidance for aircraft defense[J]. Journal of Guidance, Control, and Dynamics, 2013, 36(3):898-902.
[9] YAMASAKI T, BALAKRISHNAN S N. Intercept guidance for cooperative aircraft defense against a guided missile[J]. IFAC Proceedings Volumes, 2010, 43(15):118-123.
[10] SHAFERMAN V, SHIMA T. Cooperative multiple model adaptive guidance for an aircraft defending missile[J]. Journal of Guidance, Control, and Dynamics, 2010, 6(33):1801-1813.
[11] GUO Y, XIAO X H, HE F H, et al. Triangle interception scenario:A finite-time guidance approach[J]. International Journal of Aerospace Engineering, 2016,2016(1):1-12.
[12] 张帅, 郭杨, 王仕成. 带有引诱角色的有限时间协同制导方法[J]. 宇航学报, 2018,39(3):308-317. ZHANG S, GUO Y, WANG S C. Finite time cooperative guidance method with a lure role[J]. Journal of Astronautics, 2018,39(3):308-317(in Chinese).
[13] ZHANG S, GUO Y, WANG S C. Cooperative intercept guidance of multiple aircraft with a lure role included[J]. International Journal of Aerospace Engineering,2018,2018:1-15.
[14] SHIMA T. Optimal cooperative pursuit and evasion strategies against a homing missile[J]. Journal of Guidance, Control, and Dynamics, 2011, 34(2):414-425.
[15] PROKOPOV O, SHIMA T. Linear quadratic optimal cooperative strategies for active aircraft protection[J]. Journal of Guidance, Control, and Dynamics, 2013, 36(3):753-764.
[16] PERELMAN A, SHIMA T, RUSNAK I. Cooperative differential game strategies for active aircraft protection from a homing missile[J]. Journal of Guidance, Control, and Dynamics, 2011, 34(3):761-773.
[17] KUMAR S R, SHIMA T. Cooperative nonlinear guidance strategies for aircraft defense[J]. Journal of Guidance, Control, and Dynamics, 2016, 40(1):1-15.
[18] WEISS M, SHIMA T, CASTANEDA D, et al. Combined and cooperative minimum-effort guidance algorithms in an active aircraft defense scenario[J]. Journal of Guidance, Control, and Dynamics, 2017:1-14.
[19] 赵建博, 杨树兴, 熊芬芬. 无导引头也无惯导导弹的协同制导[J]. 航空学报, 2019, 40(10):323191. ZHAO J B, YANG S X, XIONG F F. Cooperative guidance for seeker less missile without inertial navigation system[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(10):323191(in Chinese).
[20] SHAFERMAN V, OSHMAN Y. Cooperative interception in a multi-missile engagement[C]//AIAA Guidance, Navigation, & Control Conference. Reston,VA:AIAA,2009.
[21] LIU Y F, QI N M, SHAN J J. Cooperative interception with double-line-of sight-measuring[C]//AIAA Guidance, Navigation, & Control Conference.Reston,VA:AIAA, 2013.
[22] CHEN T, XU S. Approach guidance with double-line-of-sight measuring navigation constraint for autonomous rendezvous[J]. Journal of Guidance, Control, and Dynamics, 2011, 34(3):678-687.
[23] FONOD R, SHIMA T. Estimation enhancement by cooperatively imposing relative intercept angles[J]. Journal of Guidance, Control, and Dynamics, 2017,40(7):1711-1725.
文章导航

/