固体力学与飞行器总体设计

基于虚拟载荷校准试验的襟翼曲柄测载方法

  • 孟敏 ,
  • 蒋献 ,
  • 贾天娇
展开
  • 中国飞行试验研究院 飞机所, 西安 710089

收稿日期: 2019-08-26

  修回日期: 2019-11-14

  网络出版日期: 2019-11-15

A flap crank load measurement method based on virtual load calibration test

  • MENG Min ,
  • JIANG Xian ,
  • JIA Tianjiao
Expand
  • Aircraft Institution, Chinese Flight Test Establishment, Xi'an 710089, China

Received date: 2019-08-26

  Revised date: 2019-11-14

  Online published: 2019-11-15

摘要

飞行载荷测量是验证飞机结构完整性,完成飞机定型必需的试验项目。基于应变法的飞行载荷测量方法通过地面校准试验构建应变与加载载荷之间的对应关系,然后将飞行实测应变代入载荷模型求得飞行载荷。某型飞机襟翼驱动曲柄几何外形不规则,具有轴向弯折、截面非对称等特点,载荷测量存在困难。基于该襟翼驱动曲柄的运动机理及襟翼操纵机构的传力路径研究,对曲柄进行受力分析,提出曲柄载荷测量方法,并利用虚拟载荷校准试验的手段对本方法进行验证。结果表明,本文方法是正确、有效的。

本文引用格式

孟敏 , 蒋献 , 贾天娇 . 基于虚拟载荷校准试验的襟翼曲柄测载方法[J]. 航空学报, 2020 , 41(2) : 223408 -223408 . DOI: 10.7527/S1000-6893.2019.23408

Abstract

The flight load measurement is a test item that is necessary to verify the structural integrity of the aircraft and complete the aircraft's finalization. In the flight load measurement based on the strain method, load equation of strain and load is constructed by a load calibration test, and then the measured flight strain is substituted into the load equation to obtain the flight load. Since the geometry of a certain type of aircraft's flap drive crank is irregular and has axial bending and asymmetrical cross section, it is difficult to measure the load of the flap drive crank. Based on the motion mechanism of the flap drive crank and the force transmission path of the flap control mechanism, the crank force is analyzed and a crank load measurement method is proposed. The method is verified by the virtual load calibration test. The results show that the method is correct and effective.

参考文献

[1] 中国人民解放军总装备部.10A-2008军用飞机强度和刚度规范,第十部分:飞行试验:GJB67[S].北京:总装备部军标出版发行部,2008:1-10. General Armaments Department of the PLA.10A-2008 Military airplane structural strength specification part ten:Flight load:GJB67[S]. Beijing:The General Armaments Department Published the Distribution Department, 2008:1-10(in Chinese).
[2] 冯振宇.运输类飞机适航要求解读:第2卷结构[M].北京:航空工业出版社,2013. FENG Z Y. Interpretation of airworthiness requirements for transport aircraft:Vol 2 Structure[M]. Beijing:Aviation Industry Press, 2013(in Chinese).
[3] 吴宗岱,陶宝琪. 应变测量原理及技术[M].北京:国防工业出版社,1982:34-37. WU Z D, TAO B Q. Strain measurement principle and technology[M]. Beijing:Defense Industry Press, 1982:34-37(in Chinese).
[4] WILLIAM A L, RICK S. Strain-gage loads calibration parametric study:NASA/TM-20040212853[R].Washington,D.C.:NASA, 2004.
[5] MADHUSUDAN A P. A statistics based method for mapping flight strains to loads:AIAA-2006-2005[R].Reston,VA:AIAA, 2006.
[6] MAREK H. Possibilities and methods of in-flight loading measurement[J]. Aviation, 2012, 16(2):47-50.
[7] SKOPINSKI T H, AIKEN W S, HUSTON W B. Calibration of strain-gage installations in aircraft structures for measurement of flight loads:NACA-TR-1178[R].Washington,D.C.:NACA,1954.
[8] 克利亚奇科M P.飞机强度飞行试验(静载荷)[M].汤吉晨,译.西安:航空航天部《ASST》系统工程办公室,1992:21-23. KLIQKO M P. Aircraft strength test (static load)[M].TANG J C, translated. Xi'an:ASST Engineering Office of Ministry of Aeronautics and Astronautics, 1992:21-23(in Chinese).
[9] 蒋祖国,田丁栓.飞机结构载荷/环境谱[M].北京:电子工业出版社,2012:260-267. JIANG Z G, TIAN D S. Environment load/spectrum of aircraft structure[M].Beijing:Publishing House of Electronics Industry, 2012:260-267(in Chinese).
[10] 唐宁,刘敬礼. 基于有限元分析的起落架舱门载荷校准方法[J]. 中国科技信息,2016(1):45-47. TANG N, LIU J L. Landing gear door load calibration method based on finite element analysis[J]. China Science and Technology Information, 2016(1):45-47(in Chinese).
[11] 张海涛,张鹏程,李亚南. 基于应变法飞机起落架舱门载荷实测研究[J]. 现代机械,2018(1):83-86. ZHANG H T, ZHANG P C, LI Y N. Research on the load measurement of aircraft landing gear compartment door based on the strain method[J]. Modern Machinery, 2018(1):83-86(in Chinese).
[12] 范华飞,李俊,李志蕊.短连杆飞行载荷实测技术[J].航空工程进展,2015,6(4):447-451. FAN H F, LI J, LI Z R. Flight loads measurement technique for short rod[J]. Aviation Engineering Progress, 2015,6(4):447-451(in Chinese).
[13] 何发东.飞机舵面铰链力矩飞行实测技术研究[J].科学技术与工程,2011,11(31):7835-7838. HE F D. Research on measurement technology of aircraft steering surface hinging torque flight[J]. Science and Technology and Engineering, 2011, 11(31):7835-7838(in Chinese).
[14] GRISMER M,KINSEY D,DRISMER D. Hinge moment predictions using CFD:AIAA-2000-4325[R].Reston,VA:AIAA,2000.
[15] FRY E B. Flight measurements of hinged-plate wing-spoiler hinge moments:NASA 19831.15:84343[R]. Washington, D.C.:NASA, 1983.
[16] 孔德永,吴桂馥.舵面铰链力矩的估算[J]. 空气动力学学报,2005, 23(2):263-266. KONG D Y, WU G Y. Estimation of the hinge moment of the rudder surface[J]. Journal of Aerodynamics, 2005, 23(2):263-266(in Chinese).
[17] 刘鸿文,吕荣坤.材料力学实验[M].北京:高等教育出版社, 2005:47-52,72-83. LIU H W, LV R K. Material mechanics experiment[M]. Beijing:Higher Education Press,2005:47-52,72-83(in Chinese).
[18] JENKINS J M, DEANGELIS V M. A summary of numerous strain-gage load calibration on aircraft wings and tails in a technology format:NASA Technical Memorandum 4804[R]. Washington, D.C.:NASA, 1997.
[19] 赵燕.基于遗传算法与评估模型的飞行载荷实测研究[J].航空学报, 2014, 35(9):2506-2512. ZHAO Y. Flight load measurement based on genetic algorithm and evaluating model[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(9):2506-2512(in Chinese).
[20] 阎楚良,张书明,卓宁生.飞机机翼结构载荷测量试验力学模型与数据处理[J].航空学报,2000,21(1):56-59. YAN C L, ZHANG S M, ZHUO N S. Mechanical model and data treatment of load measurement test for aircraft wing structures[J]. Acta Aeronautica et Astronautica Sinica, 2000,21(1):56-59(in Chinese).
[21] 郭正旺,曹景涛.飞机双垂尾载荷自平衡校准[J].强度与环境,2009,36(4):19-23. GUO Z W, CAO J T. The aircraft double vertical tail load balance calibration[J]. Strength and Environment, 2009,36(4):19-23(in Chinese).
文章导航

/