流体力学与飞行力学

先进战斗机生命保障系统

  • 包晓宁 ,
  • 赵培林 ,
  • 张保中 ,
  • 胡志文 ,
  • 兰于清 ,
  • 薛飞
展开
  • 中国航空工业成都飞机设计研究所, 成都 610091

收稿日期: 2019-09-10

  修回日期: 2019-09-23

  网络出版日期: 2019-11-14

Life support system in advanced fighter

  • BAO Xiaoning ,
  • ZHAO Peilin ,
  • ZHANG Baozhong ,
  • HU Zhiwen ,
  • LAN Yuqing ,
  • XUE Fei
Expand
  • AVIC Chengdu Aircraft Design and Research Institute, Chengdu 610091, China

Received date: 2019-09-10

  Revised date: 2019-09-23

  Online published: 2019-11-14

摘要

生命保障系统为适应新型战斗机发展需求,围绕"以人为保障对象"系统特征,采用基于系统工程的需求/功能分析方法,从飞机总体、生理、六性、飞管、任务等需求出发,提出系统需求,开展需求分析向工程实践转化研究,确定分解了系统、成品的设计及指标要求。通过系统架构优化、提高快速响应能力研究,建立大系统综合的系统架构。基于数据共享、控制融合的飞管平台以及氧气介质传感器技术,结合六性、FMECA和FTA,开展数字协同环境下生命保障系统综合设计,系统电子信息化程度取得突破,具备高度综合的全数字显示与控制、自主诊断和状态监测能力,获得高效维修保障能力,为实现玻璃化座舱、快速出动、快速布防、跨区域作战、自主保障提供有力支撑。

本文引用格式

包晓宁 , 赵培林 , 张保中 , 胡志文 , 兰于清 , 薛飞 . 先进战斗机生命保障系统[J]. 航空学报, 2020 , 41(6) : 523464 -523464 . DOI: 10.7527/S1000-6893.2019.23464

Abstract

To adapt to the development of the new-type fighter aircraft, additional functions and requirements of the life support system are proposed based on the human-oriented design concept and demands of the general design, physiology, "Six Character", ergonomics, vehicle management, and missions. This paper reflects on the design experience of foreign advanced fighter aircraft and uses the requirement and function analysis method of system engineering. Through the research of transformation from requirement analysis to engineering practice, design requirements and indexes of the system with its airborne equipment are determined and broken down. The studies on optimizing system architecture and improving quick response capability establish the life support system framework integrated with the general aircraft system. Benefiting from the open vehicle management system with data sharing, fusion control, oxygen sensor technology, "Six Character", Failure Modes, Effects and Criticality Analysis (FMECA), and Fault Tree Analysis (FTA), integrated design of the life support system in digital coordination environment has been carried out and a breakthrough in the electronic information has been achieved so that the highly-integrated ability of all-digital display, self-diagnosis, and condition monitoring is available in the life support system. The proposed design improves its maintainability and provides strong support for the fighter aircraft in glass canopy, fast response, fast deployment, interregional operation, independent support, and high survivability.

参考文献

[1] MCGRADY M B, WRIGHT M V. F-22 life support system development[C]//33rd Annual Symposium, 1995:124-130.
[2] 曾相戈, 金玉华,吴涛, 等. 武器装备研制系统工程通用要求:GJB 8113-2013[S]. 北京:中国人民解放军总装备部, 2013. ZENG X G, JIN Y H, WU T, et al. General requirements of systems engineering for weapon and equipment development:GJB 8113-2013[S]. Beijing:PLA General Armament Department, 2013(in Chinese).
[3] 王恒斌.飞机机上制氧的发展和前景[J]. 科技情报, 1988, 25:1-14. WANG H B. Development and prospect of the on board oxygen generation system[J]. Science & Technology Information, 1988, 25:1-14(in Chinese).
[4] 肖华军, 袁修干. 机载分子筛制氧技术发展的现状与动向[J]. 航空科学技术,1997, 1:26-28. XIAO H J, YUAN X G. Current state and trend of molecular screen oxygen making[J]. Aeronautical Science & Technology, 1997,1:26-28(in Chinese).
[5] LOVEFT N P J, ASHDOWN R. Development of the obogs and brag vale for the F-22 life. Support system[C]//38th Annual Symposium, 1998:62-71.
[6] 王秀丽. 美国空军F-22飞机事故原因调查[J]. 飞行事故和失效分析, 2012, 2:6-11. WANG X L. Causes investigation of USAF F-22 aircraft accident[J]. Flight Accidents and Failure Analysis, 2012,2:6-11(in Chinese).
[7] 韩兵, 滑永峰, 宋珂珂. 治愈"猛禽缺氧"-美国空军解决F-22供氧系统问题[J]. 航空世界, 2016, 7:44-47. HAN B, HUA Y F, SONG K K. Healing of "Raptor's Hypoxia"-Solving the issue of F-22 oxygen supply system by USAF[J]. Avistion World, 2016, 7:44-47(in Chinese).
[8] 王相林.航空加压供氧生理要求:GJB 867-1990[S]. 北京:国防科学技术委员会, 1990. WANG X L. Physiology requirement for aircraft positive pressure oxygen:GJB 867-1990[S]. Bejing:Commission of Science,Technology and Industry for National Defense, 1990(in Chinese).
[9] 王相林.飞行员肺脏对减压峰值的生理耐限:GJB 690-1990[S]. 北京:国防科学技术委员会,1990. WANG X L. The physiological tolerance limits for pilots lunge to the peak value of decompression:GJB 690-1990[S]. Bejing:Commission of Science,Technology and Industry for National Defense,1990(in Chinese).
[10] 赵迎春,金不方,周本林, 等.飞行员加压供氧规范:GJB2193-1994[S]. 北京:国防科学技术委员会,1994. ZHAO Y C, JIN B F, ZHOU B L, et al. Specification of positive pressure oxygen system for flight crew in aviation:GJB2193-1994[S]. Beijing:Commission of Science,Technology and Industry for National Defense, 1994(in Chinese).
[11] 耿喜臣, 詹长录, 颜桂定, 等. 先进囊式抗荷系统与侧管式抗荷系统抗荷性能的比较[C]//中国航空学会人体工程、航医、救生专业分会第五届学术年会. 北京:中国航空学会, 1998:51-56. GENG X C, ZHAN C L, YAN G D, et al. A comparative study on anti-G protection of newly developed bladder anti-G system and capstan anti-G system[C]//Proceedings of 5th Annual Meeting on CSAA of Ergonomic, Aeromedicine and Lifesaving Branch. Beijing:Chinese Society of Aeronautics and Astronautics, 1998:51-56(in Chinese).
[12] 耿喜臣, 初旭, 詹长禄, 等.加囊正压呼吸管式背心的代偿性能的研究[J].航天医学与医学工程, 1995, 8(2):134-138 GENG X C, CHU X, ZHAN C L, et al. A study on enhanced counter pressure effect of capstan pressure jerkin[J]. Space Medicine & Medical Engineering, 1995, 8(2):134-138(in Chinese).
[13] 刘晓鹏, 肖华军. 高空代偿服的现状与研究进展[C]//中国航空学会2009年环控暨人机工效学术交流会. 北京:中国航空学会,2009:345-349. LIU X P, XIAO H J. Status and progress of partial pressure suit[C]//Proceedings of the 2009 CSAA on ECS and Ergonomics Academic Seminar. Beijing:Chinese Society of Aeronautics and Astronautics, 2009:345-349(in Chinese).
[14] 贾司光. 急性缺氧防护生理要求:GJB 114-1986[S]. 北京:国防科学技术委员会, 1986. JIA S G. Physiological requirement for protection against acute hypoxia:GJB 114-1986[S]. Beijing:Commission of Science,Technology and Industry for National Defense, 1986(in Chinese).
[15] 肖华军, 万长宏, 王英, 等. 模拟机载分子筛供氧在高空迅速减压时对生理的影响[J]. 航空学报,1995, 16(1):47-63 XIAO H J,WAN C H,WANG Y. The effects of altitude rapid depression on physiology with oxygen supply from the simulated molecular sieve oxygen generating system[J]. Acta Aeronautica et Astronautica Sinica, 1995, 16(1):47-63(in Chinese).
[16] 徐艳, 张立辉, 颜桂定, 等. PHP动作对加速度性肺不张的防护作用[J]. 航天医学与医学工程, 2012, 25(2):79-85. XU Y, ZHANG L H, YAN G D, et al. Protection of PHP maneuver against human centrifuge-induced acceleration atelectasis[J]. Space Medicine & Medical Engineering, 2012, 25(2):79-85(in Chinese).
[17] 耿喜臣, 詹长录, 颜桂定,等. 不同压力制度抗荷正压呼吸的+Gz防护作用[J]. 航天医学与医学工程, 2000, 13(3):166-170. GENG X C, ZHAN C L, YAN G D, et al. The +Gz protection against by pressure breathing with different pressure schedules[J]. Space Medicine & Medical Engineering, 2000, 13(3):166-170(in Chinese).
[18] 耿喜臣,詹长录,闫桂定, 等. 对不同扩大覆盖面积抗荷服的+Gz防护作用的评价[J]. 航天医学与医学工程, 1996, 9(5):317-323. GENG X C, ZHAN C L, YAN G D, et al. An assessment of +Gz protection afforded by different extended bladder coverage anti-G suits[J]. Space Medicine & Medical Engineering, 1996, 9(5):317-323(in Chinese).
[19] 卢虹冰, 白净, 张立藩, 等. 扩大囊覆盖面积抗荷服+Gz防护作用的计算机仿真研究[J]. 航天医学与医学工程, 1998, 11(4):240-244. LU H B, BAI J, ZHANG L P, et al. A simulation study on +Gz protection afforded by extended coverage anti-G suits[J]. Space Medicine & Medical Engineering, 1998, 11(4):240-244(in Chinese).
[20] 黄跃坤, 孙兵. 国外飞机供氧装备发展动态综述[C]//中国航空学会人体工程、航医、救生专委会第三届学术年会.北京:中国航空学会, 1991. HUANG Y K, SUN B. A review on the development of foreign aircraft oxygen delivery system[C]//Proceedings of 3rd Annual Meeting on CSAA of Ergonomic, Aeromedicine and Lifesaving Branch. Beijing:Chinese Society of Aeronautics and Astronautics, 1991(in Chinese).
[21] 肖华军. 法国军用飞机机载分子筛氧气系统简介[C]//中国航空学会人体工程、航医、救生专业分会第五届学术年会. 北京:中国航空学会, 1998:253-256. XIAO H J. A brief introduction to the molecular sieve oxygen system of military aircraft[C]//Proceedings of 5th Annual Meeting on CSAA of Ergonomic, Aeromedicine and Lifesaving Branch. Beijing:Chinese Society of Aeronautics and Astronautics, 1998:253-256(in Chinese).
[22] 王慧丹, 林贵平, 王亮, 等. 三床机载制氧系统性能仿真及影响因素分析[J]. 北京航空航天大学学报, 2011, 37(6):717-721. WANG H D, LIN G P, WANG L, et al. Simulation on performance and effects of parameters analysis on three-bed OBOGS[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(6):717-721(in Chinese).
[23] 任兆生, 李伟, 李俊勤. 飞行员穿不同覆盖面积囊式抗荷服的热应激[C]//中国航空学会2000年环控暨人机工效学术交流会. 北京:中国航空学会, 2000:17-21. REN Z S, LI W, LI J Q. Heat stress of different extended coverage anti-G suits[C]//Proceedings of the 2000 CSAA on ECS and Ergonomics Academic Seminar. Beijing:Chinese Society of Aeronautics and Astronautics, 2000:17-21(in Chinese).
[24] 张立辉. 国外飞行员多功能及一体化个体防护装备研究进展[C]//第十一届人-机-环境系统工程大会,2011:253-256. ZHANG L H. Progress of foreign pilot multifunctional and integrative personal protective equipments[C]//Proceedings of the 11th Conference on Man-Machine-Environment System Engineering, 2011:253-256(in Chinese).
[25] 任兆生, 石立勇, 薛利豪. 飞行员个体防护装备与温度舒适性[C]//中国航空学会2009年环控暨人机工效学术交流会.北京:中国航空学会, 2009:341-344. REN Z S, SHI L Y, XUE L H. Pilot personal protective equipment with temperature comfort evaluation[C]//Proceedings of the 2009 CSAA on ECS and Ergonomics Academic Seminar. Beijing:Chinese Society of Aeronautics and Astronautics, 2009:341-344(in Chinese).
文章导航

/