流体力学与飞行力学

战斗机大迎角/过失速机动下的进气道气动特性

  • 向欢 ,
  • 杨应凯 ,
  • 谢锦睿 ,
  • 吴永胜
展开
  • 中国航空工业成都飞机设计研究所, 成都 610091

收稿日期: 2019-09-10

  修回日期: 2019-09-30

  网络出版日期: 2019-11-14

Inlet aerodynamic characteristics of fighter under high angle of attack and post-stall maneuver

  • XIANG Huan ,
  • YANG Yingkai ,
  • XIE Jinrui ,
  • WU Yongsheng
Expand
  • AVIC Chengdu Aircraft Design and Research Institute, Chengdu 610091, China

Received date: 2019-09-10

  Revised date: 2019-09-30

  Online published: 2019-11-14

摘要

为掌握战斗机在大迎角和过失速机动飞行时进气道的稳、动态气动特性,采用基于动态嵌套网格的非定常雷诺平均Navier-Stokes (URANS)方程和大迎角风洞试验方法对某战斗机进行了研究,并通过大迎角和过失速机动飞行试验进行了验证。结果表明:大迎角稳态下进气道气动性能随迎角增大逐渐降低,天地相关性吻合良好,而计算仿真和飞行试验均捕捉了眼镜蛇机动下进气道的非定常迟滞效应。通过研究获得了战斗机在大迎角和过失速机动下的进气道气动特性,建立了过失速机动下进气道非定常非线性特性问题的研究方法。

本文引用格式

向欢 , 杨应凯 , 谢锦睿 , 吴永胜 . 战斗机大迎角/过失速机动下的进气道气动特性[J]. 航空学报, 2020 , 41(6) : 523460 -523460 . DOI: 10.7527/S1000-6893.2019.23460

Abstract

In order to capture the inlet aerodynamic characteristics of fighter under high angles of attack and unsteady nonlinear post-stall maneuvers, the Unsteady Reynolds Averaged Navier-Stokes (URANS) numerical simulation employing dynamic overset grids technique and wind tunnel tests are used. Flight tests under above conditions are adopted for validation and in-depth analysis. Results indicate that under high angle of attack steady state, wind tunnel test prediction matches well with flight test data and both reveal inlet performance reduction as the angle of attack increases. The unsteady over-loop effects of the inlet under cobra maneuver are observed in both URANS calculations and flight tests. Furthermore, fighter inlet aerodynamic characteristics are uncovered under high angle of attack and post-stall maneuver conditions in the scope of current investigation. The method for inlet unsteady and nonlinear characteristics analysis is finally established.

参考文献

[1] WALSH K R, YUHAS A J, WILLIAMS J G, et al. Inlet distortion for an F/A-18A aircraft during steady aerodynamic conditions up to 60° angle of attack:NASA-TM-104329[R]. Washington, D.C.:NASA, 1997.
[2] SMITH C F, PODLESKI S D, BARANKIEWICZ W S. Comparison of F/A-18A high alpha research vehicle inlet analysis results with flight data:AIAA-1995-2758[R]. Reston:AIAA, 1995.
[3] YUHAS A J, STEENKEN W G, WILLIAMS J G. F/A-18A inlet flow characteristics during maneuvers with rapidly changing angle of attack:NASA-TM-104327[R]. Washington, D.C.:NASA, 1997.
[4] STEENKEN W G, WILLIAMS J G, WALSH K R. Inlet flow characteristics during rapid maneuvers for an F/A-18A airplane:NASA-TM-206587[R]. Washington, D.C.:NASA, 1999.
[5] STEENKEN W G, WILLIAMS J G, YUHAS A J, et al. An inlet distortion assessment during aircraft departures at high angle of attack for an F/A-18A aircraft:NASA-TM-104328[R]. Washington, D.C.:NASA, 1997.
[6] PODLESKI S D. Installed F/A-18 inlet flow calculations at 60° angle-of-attack and 10° sideslip:AIAA-1993-1806[R]. Reston:AIAA, 1993.
[7] SMITH C F, PODLESKI S D. Installed F/A-18 inlet flow calculations at 30° angle-of-attack:A comparative study:AIAA-1994-3213[R]. Reston:AIAA, 1994.
[8] SMITH C F, PODLESKI S D, BARANKIEWICZ W S, et al. Evaluation of F/A-18A HARV inlet flow analysis with flight data:NASA-TM-107130[R]. Washington, D.C.:NASA, 1995.
[9] SMITH C F. Prediction of wind tunnel effects on the installed F/A-18A inlet flow field at high angle-of-attack:NASA-CR-195429[R]. Washington, D.C.:NASA, 1995.
[10] PODLESKI S D. PARC3D calculations of the F/A-18A HARV inlet vortex generators:NASA-CR-195456[R]. Washington, D.C.:NASA, 1995.
[11] NORBY W P, LADD J A, YUHAS A J. Dynamic inlet distortion prediction with a combined computational fluid dynamics and distortion synthesis approach:NASA-CR-198053[R]. Washington, D.C.:NASA, 1996.
[12] YUHAS A J, RAY R J, BURLEY R R. Design and development of an F/A-18 inlet distortion rake:A cost and time saving solution:NASA-TM-4722[R]. Washington, D.C.:NASA, 1995.
[13] WILLIAMS J G, STEENKEN W G, YUHAS A J. Estimating engine airflow in gas-turbine powered aircraft with clean and distorted inlet flows:NASA-CR-198052[R]. Washington, D.C.:NASA, 1996.
[14] WALSH K R, STEENKEN W G, WILLIAMS J G. Summary of inlet characteristics of the F/A-18A High Alpha Research Vehicle:AIAA-1998-3713[R]. Reston:AIAA, 1998.
[15] STEENKEN W G, WILLIAMS J G, YUHAS A J, et al. Factors affecting inlet-engine compatibility during aircraft departures at high angle of attack for an F/A-18A:NASA-TM-206572[R]. Washington, D.C.:NASA, 1999.
[16] 巫朝君,聂博文,孔鹏,等. 战斗机进气道非定常性能试验技术[J]. 实验流体力学, 2017, 31(2):98-103. WU C J, NIE B W, KONG P, et al. Test technology on unsteady characteristics of inlet flow during fighter plane maneuvers[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(2):98-103(in Chinese).
[17] 杨应凯. 飞机快速俯仰机动下Bump进气道的动态特性研究[J]. 实验流体力学, 2013, 27(6):39-42. YANG Y K. The study on bump inlet dynamic characteristics under aircraft fast pitching maneuver[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(6):39-42(in Chinese).
[18] 胡铃心,昂海松,肖天航. 鸭式布局战斗机非常规机动的流场机理数值分析[J]. 南京航空航天大学学报学报, 2014, 46(6):874-881. HU L X, ANG H S, XIAO T H. Numerical analysis on flow-field around unconventionally maneuvering canard fighter[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2014, 46(6):874-881(in Chinese).
[19] 向欢. 基于动态嵌套网格的非定常数值模拟方法在战斗机进气道工程实际中的应用[C]//第五届发动机进排气学术交流会议论文集. 南京:南京航空航天大学, 2017:371-379. XIANG H. The use of URANS algorithm based on overset grids in aircraft inlet engineering[C]//Proceedings of the 5th Engine Inlet and Nozzle Conference. Nanjing:Nanjing University of Aeronautics and Astronautics, 2017:371-379(in Chinese).
[20] 向欢. 战斗机快速俯仰机动下进气道动态特性的数值模拟[C]//第六届全国进气道/尾喷管学术交流会议论文集. 西宁:青海大学, 2018:633-640. XIANG H. The calculation of inlet dynamic characteristics under aircraft rapid pitching maneuver[C]//Proceedings of 6th National Inlet and Nozzle Conference. Xining:Qinghai University, 2018:633-640(in Chinese).
[21] 向欢. 战斗机快速俯仰机动下的进气道动态特性[C]//中国航空学会飞机总体分会第十四次学术交流会议论文集. 成都:成都飞机设计研究所, 2018:563-570. XIANG H. The inlet dynamic characteristics under aircraft rapid pitching maneuver[C]//Proceedings of Chinese Society of Aeronautics and Astronautics Aircraft Branch 14th Academic Forum and Exchange. Chengdu:Chengdu Aircraft Design and Research Institute, 2018:563-570(in Chinese).
文章导航

/