先进制造技术与装备专栏

面向多级加筋壳的高效变保真度代理模型

  • 李增聪 ,
  • 田阔 ,
  • 赵海心
展开
  • 1. 大连理工大学 工业装备结构分析国家重点实验室 工程力学系, 大连 116024;
    2. 大连理工大学 机械工程学院, 大连 116024

收稿日期: 2019-09-02

  修回日期: 2019-10-03

  网络出版日期: 2019-11-14

基金资助

国家自然科学基金(11902065,11825202);中国博士后科学基金面上项目(2019M651107);兴辽英才计划(XLYC1802020);国家"973"计划(2014CB049000);中央高校基本科研业务费专项资金(DUT2019TD37)

Efficient variable-fidelity models for hierarchical stiffened shells

  • LI Zengcong ,
  • TIAN Kuo ,
  • ZHAO Haixin
Expand
  • 1. Department of Engineering Mechanics, State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, China;
    2. School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China

Received date: 2019-09-02

  Revised date: 2019-10-03

  Online published: 2019-11-14

Supported by

National Natural Science Foundation of China (11902065, 11825202); China Postdoctoral Science Foundation (2019M651107); Liaoning Revitalization Talents Program (XLYC1802020); National Basic Research Program of China (2014CB049000); The Fundamental Research Funds for the Central Universities (DUT2019TD37)

摘要

多级加筋壳结构作为一种新颖的航空航天薄壁结构,具有轻质、高承载的优势。由于其加筋结构复杂,导致基于高保真度模型的多级加筋壳后屈曲分析耗时较长,提高其后屈曲分析及优化效率对于多级加筋壳快速设计具有重要的意义。变保真度模型在复杂工程问题的设计与优化过程中得到了广泛的应用,其通过桥函数连接高保真度模型和低保真度模型,具有预测精度高和计算成本低的优点。首先建立了多级加筋壳结构的高保真度模型和低保真度模型,并基于高斯过程回归构建了多级加筋壳结构的变保真度模型,然后基于变保真度模型的最大均方根误差方法开展自适应加点。结果表明,在达到同样的较高预测精度水平时,基于提出方法构建的变保真度模型比直接采用高保真度模型构建的代理模型节约了60%的计算成本,表现出优异的效率优势。同时,还探讨了不同类型低保真度模型对于多级加筋壳结构变保真度模型预测精度的影响。分析结果表明,对于多级加筋壳承载力评估这类典型的后屈曲问题,建立可捕捉后屈曲特性的低保真度模型能有效提升变保真度模型的精度。

本文引用格式

李增聪 , 田阔 , 赵海心 . 面向多级加筋壳的高效变保真度代理模型[J]. 航空学报, 2020 , 41(7) : 623435 -623435 . DOI: 10.7527/S1000-6893.2019.23435

Abstract

The hierarchical stiffened shell is one kind of innovative aerospace thin-walled structures, and it has the advantages of lightweight and high load-carrying capacity. Since the stiffener configurations of hierarchical stiffened shells are complex, they would result in longer computational time of post-buckling analysis. In this case, it is meaningful to improve the efficiency of post-buckling analysis and optimization for the rapid design of hierarchical stiffened shells. Variable-Fidelity Model (VFM) has been widely used in the design and optimization of complex engineering structures. High-Fidelity Model (HFM) and Low-Fidelity Model (LFM) linked by the bridge function can indicate high prediction accuracy and low computational cost. In this paper, the establishment methods of HFM and LFM are proposed for hierarchical stiffened shells. Then, the Gaussian process regression method is employed to establish VFM, where an adaptive updating method is proposed according to the root mean square error of VFM. Results indicate that, when achieving the similar prediction accuracy, the computational cost of the VFM based on the proposed method is lower by about 60% than that of the surrogate model based on the direct sampling of HFM, indicating the significant advantage of the proposed method in prediction accuracy. In addition, the effects of various types of LFMs on the prediction accuracy of VFM are discussed. Results reveal that, with regard to the post-buckling problems for the load-carrying capacity prediction of hierarchical stiffened shells, the prediction accuracy of VFM can be improved if the post-buckling analysis ability is retained in the establishment of LFM.

参考文献

[1] LENE F, DUVAUT G, OLIVIER-MAILHE M, et al. An advanced methodology for optimum design of a composite stiffened cylinder[J]. Composite Structures, 2009, 91(4):392-397.
[2] HAO W, YING Y, WEI Y, et al. Adaptive approximation-based optimization of composite advanced grid-stiffened cylinder[J]. Chinese Journal of Aeronautics, 2010, 23(4):423-429.
[3] 吴振强,程昊,张伟,等. 热环境对飞行器壁板结构动特性的影响[J]. 航空学报, 2013, 34(2):334-342. WU Z Q, CHENG H, ZHANG W, et al. Effects of thermal environment on dynamic properties of aerospace vehicle panel structures[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(2):334-342(in Chinese).
[4] SHI S S, SUN Z, REN M F, et al. Buckling resistance of grid-stiffened carbon-fiber thin-shell structures[J]. Composites Part B:Engineering, 2013, 45(1):888-896.
[5] WANG B, HAO P, LI G, et al. Generatrix shape optimization of stiffened shells for low imperfection sensitivity[J]. Science China Technological Sciences, 2014, 57(10):2012-2019.
[6] 马建峰,陈五一,赵岭, 等. 基于蜻蜓膜翅结构的飞机加强框的仿生设计[J]. 航空学报, 2009, 30(3):562-569. MA J F, CHEN W Y, ZHAO L, et al. Bionic design of aircraft reinforced frame based on structure of dragonfly wing[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(3):562-569(in Chinese).
[7] WANG B, DU K F, HAO P, et al. Numerically and experimentally predicted knockdown factors for stiffened shells under axial compression[J]. Thin-Walled Structures, 2016, 109:13-24.
[8] CHEN H J, TSAI S W. Analysis and optimum design of composite grid structures[J]. Journal of Composite Materials, 1996, 30(4):503-534.
[9] JONES R M. Buckling of circular cylindrical shells with multiple orthotropic layers and eccentric stiffeners[J]. AIAA Journal, 1968, 6(12):2301-2305.
[10] SADEGHIFAR M, BAGHERI M, JAFARI A A. Buckling analysis of stringer-stiffened laminated cylindrical shells with nonuniform eccentricity[J]. Archive of Applied Mechanics, 2011, 81(7):875-886.
[11] QUEK S C, WAAS A M, SHAHWAN K W, et al. Analysis of 2D triaxial flat braided textile composites[J]. International Journal of Mechanical Sciences, 2003, 45(6-7):1077-1096.
[12] MARTINEZ O A, SANKAR B V, HAFTKA R T, et al. Micromechanical analysis of composite corrugated-core sandwich panels for integral thermal protection systems[J]. AIAA Journal, 2007, 45(9):2323-2336.
[13] LEE C Y, YU W. Homogenization and dimensional reduction of composite plates with in-plane heterogeneity[J]. International Journal of Solids and Structures, 2011, 48(10):1474-1484.
[14] CHENG G D, CAI Y W, XU L. Novel implementation of homogenization method to predict effective properties of periodic materials[J]. Acta Mechanica Sinica, 2013, 29(4):550-556.
[15] CAI Y W, XU L, CHENG G D. Novel numerical implementation of asymptotic homogenization method for periodic plate structures[J]. International Journal of Solids and Structures, 2014, 51(1):284-292.
[16] 丛明煜, 王丽萍. 现代启发式算法理论研究[J]. 高技术通讯, 2003, 13(5):105-110. CONG M Y, WANG L P. Survey on the theory of meta-heuristic algorithms[J]. High Technology Letters, 2003, 13(5):105-110(in Chinese).
[17] RIKARDS R, ABRAMOVICH H, AUZINS J, et al. Surrogate models for optimum design of stiffened composite shells[J]. Composite Structures, 2004, 63(2):243-251.
[18] 郝鹏, 王博, 李刚, 等. T型截面多级加筋柱壳的缺陷敏感性及优化研究[J]. 工程力学, 2015, 32(8):223-228. HAO P, WANG B, LI G, et al. Imperfection sensitivity analysis and optimization of hierarchical stiffened shells with T-section stiffeners[J]. Engineering Mechanics, 2015, 32(8):223-228(in Chinese).
[19] ZHAO Y N, CHEN M J, YANG F, et al. Optimal design of hierarchical grid-stiffened cylindrical shell structures based on linear buckling and nonlinear collapse analyses[J]. Thin-Walled Structures, 2017, 119:315-323.
[20] 王博, 杜凯繁, 郝鹏, 等. 考虑几何缺陷的轴压双层蒙皮加筋柱壳结构设计[J]. 中国科学:物理学, 力学, 天文学, 2018, 48(1):1-8. WANG B, DU K F, HAO P, et al. Design of sandwich-walled cylindrical shell structure[J]. Science China Physica, Mechanica & Astronomica, 2018, 48(1):1-8(in Chinese).
[21] TIAN K, WANG B, ZHANG K, et al. Tailoring the optimal load-carrying efficiency of hierarchical stiffened shells by competitive sampling[J]. Thin-Walled Structures, 2018, 133:216-225.
[22] HAN Z H, GÖRTZ S, ZIMMERMANN R. Improving variable-fidelity surrogate modeling via gradient-enhanced kriging and a generalized hybrid bridge function[J]. Aerospace Science and Technology, 2013, 25(1):177-189.
[23] HAN Z H, GÖRTZ S. Hierarchical kriging model for variable-fidelity surrogate modeling[J]. AIAA Journal, 2012, 50(9):1885-1896.
[24] HAN Z H, ZIMMERMAN R, GÖRTZ S. Alternative cokriging method for variable-fidelity surrogate modeling[J]. AIAA Journal, 2012, 50(5):1205-1210.
[25] 宋保维, 王新晶, 王鹏. 基于变保真度模型的AUV流体动力参数预测[J]. 机械工程学报, 2017, 53(18):176-182. SONG B W, WANG X J, WANG P. Aerodynamic optimization based on multi-fidelity surrogate[J]. Journal of Mechanical Engineering. 2017, 53(18):176-182(in Chinese).
[26] HAN Z H, GÖRTZ S, HAIN R. New results in numerical and experimental fluid mechanics VII[M]. Berlin:Springer Berlin Heidelberg, 2010:17-25.
[27] 黄礼铿, 高正红, 张德虎. 基于变可信度代理模型的气动优化[J]. 空气动力学学报, 2013, 31(6):783-788. HUANG L Q, GAO Z H, ZHANG D H, et al. Aerodynamic optimization based on multi-fidelity surrogate[J]. Acta Aerodynamica Sinica, 2013, 31(6):783-788(in Chinese).
[28] ZHOU Q, SHAO X, JIANG P, et al. An active learning metamodeling approach by sequentially exploiting difference information from variable-fidelity models[J]. Advanced Engineering Informatics, 2016, 30(3):283-297.
[29] ZHOU Q, SHAO X, JIANG P, et al. An active learning variable-fidelity metamodelling approach based on ensemble of metamodels and objective-oriented sequential sampling[J]. Journal of Engineering Design, 2016, 27(4-6):205-231.
[30] 刘蔚. 多学科设计优化方法在7000米载人潜水器总体设计中的应用[D]. 上海:上海交通大学, 2007:105-122. LIU W. Application of MDO method to 7000m HOV general design[D]. Shanghai:Shanghai Jiao Tong University, 2007:105-122(in Chinese).
[31] TIAN K, WANG B, HAO P, et al. A high-fidelity approximate model for determining lower-bound buckling loads for stiffened shells[J]. International Journal of Solids and Structures, 2018, 148:14-23.
[32] BENJAMIN P, KAREN W, MAX G. Survey of multifidelity methods in uncertainty propagation, inference, and optimization[J]. SIAM Review, 2018, 60(3):550-591.
[33] HAFTKA, RAPHAEL T. Combining global and local approximations[J]. AIAA Journal, 1991, 29(9):1523-1525.
[34] KEANE A J. Cokriging for robust design optimization[J]. AIAA Journal, 2012, 50(11):2351-2364.
[35] PERDIKARIS P, VENTURI D, ROYSET J O, et al. Multi-fidelity modelling via recursive co-kriging and Gaussian-Markov random fields[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2015, 471(2179):1-22.
[36] RASMUSSEN C E, WILLIAMS C K I. Gaussian processes for machine learning[M]. Cambridge:MIT Press, 2006:7-31.
[37] 韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报, 2016, 37(11):3197-3225. HAN Z H. Kriging surrogate model and its application to design optimization:A review of recent progress[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11):3197-3225(in Chinese).
[38] 刘俊. 基于代理模型的高效气动优化设计方法及应用[D]. 西安:西北工业大学, 2015:60-65. LIU J. Efficient surrogate-based optimization method and its application in aerodynamic design[D]. Xi'an:Northwestern Polytechnical University, 2015:60-65(in Chinese).
[39] PARK C, HAFTKA R T, KIM N H. Remarks on multi-fidelity surrogates[J]. Structural and Multidisciplinary Optimization, 2017, 55(3):1029-1050.
[40] FERNÁNDEZ-GODINO M G, PARK C, KIM N H, et al. Issues in deciding whether to use multifidelity surrogates[J]. AIAA Journal, 2019, 57(5):2039-2054.
[41] WANG B, TIAN K, HAO P, et al. Numerical-based smeared stiffener method for global buckling analysis of grid-stiffened composite cylindrical shells[J]. Composite Structures, 2016, 152:807-815.
[42] 田阔. 基于多保真度建模的多层级筒壳屈曲分析及优化方法研究[D]. 大连:大连理工大学, 2018:66-70. TIAN K. Research on buckling analysis and optimization methods of hierarchical cylindrical shells based on multi-fidelity modeling[D]. Dalian:Dalian University of Technology, 2018:66-70(in Chinese).
文章导航

/