固体力学与飞行器总体设计

直升机后缘襟翼驱动器迟滞现象仿真与抑制

  • 周金龙 ,
  • 董凌华 ,
  • 杨卫东
展开
  • 南京航空航天大学 航空学院, 直升机旋翼动力学国家级重点实验室, 南京 210016

收稿日期: 2019-08-14

  修回日期: 2019-11-15

  网络出版日期: 2019-11-14

基金资助

国家自然科学基金(11402110);江苏高校优势学科建设工程资助项目

Hysteresis modeling and suppression of piezoelectric actuator for helicopter trailing-edge flaps

  • ZHOU Jinlong ,
  • DONG Linghua ,
  • YANG Weidong
Expand
  • National Key Laboratory of Science and Technology on Rotorcraft Aeromechanics, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2019-08-14

  Revised date: 2019-11-15

  Online published: 2019-11-14

Supported by

National Natural Science Foundation of China (11402110); A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education(PAPD)

摘要

直升机后缘襟翼多采用压电驱动器作为驱动元件,但是在使用过程中压电驱动器迟滞会对其振动控制性能产生不利影响,因此针对压电驱动器迟滞开展了迟滞建模与抑制研究。通过实验研究了压电驱动器在不同驱动频率下的迟滞特性,采用Bouc-Wen模型对驱动器迟滞现象进行了建模,并采用粒子群算法(PSO)辨识模型参数,与实际测量迟滞曲线进行了对比,在10~60 Hz范围内所建立的迟滞模型能够较为精确地描述压电驱动器迟滞现象。建立了基于Bouc-Wen逆模型的前馈补偿控制与PID反馈控制相结合的复合控制策略,实验结果显示该控制策略能够在10~60 Hz较宽的频率范围内有效抑制该压电驱动器迟滞现象。建立了考虑驱动器迟滞的主动控制后缘襟翼振动控制动力学模型,并对中等速度稳态前飞条件下后缘襟翼振动控制性能进行了仿真,仿真结果显示驱动器迟滞会在一定程度上削弱振动控制性能,而采用复合控制可以提高后缘襟翼旋翼振动控制性能。

本文引用格式

周金龙 , 董凌华 , 杨卫东 . 直升机后缘襟翼驱动器迟滞现象仿真与抑制[J]. 航空学报, 2020 , 41(4) : 223384 -223384 . DOI: 10.7527/S1000-6893.2019.23384

Abstract

Piezoelectric actuators are used to drive trailing-edge flaps of helicopters, but hysteresis of these actuators can degrade the vibration control performance of the active rotor. To solve this problem, hysteresis modeling and suppression are studied for a piezoelectric actuator. The hysteresis curves of this actuator at different frequencies are measured, and the Bouc-Wen model is utilized to model its rate-dependent hysteresis. Particle Swarm Optimization (PSO) algorithm is selected to identify the unknown parameters of the Bouc-Wen model, and a good agreement is shown between experimental results and model outputs for a range of frequencies from 10 Hz to 60 Hz, demonstrating that the established model is capable of simulating the actuator’s dynamic hysteresis. A compound control scheme combining feedforward control based on inverse Bouc-Wen model and PID feedback control is established, and experimental results show that hysteresis of the piezoelectric actuator is suppressed remarkably at frequency range of 10 Hz to 60 Hz. Hysteresis model of the piezoelectric actuator is incorporated into helicopter rotor dynamic model to study the effect of actuator hysteresis on vibration control performance. Simulations of a model rotor with trailing-edge flaps are conducted in moderate speed forward flight condition. The results show that hysteresis can result in performance degradation of the trailing-edge flaps, while the compound control algorithm has the potential to improve the control authority of active rotor.

参考文献

[1] STRAUB F K, ANAND V R, BIRCHETTE T S, et al. SMART rotor development and wind tunnel test:ARC-E-DAA-TN453[R]. Washington,D.C.:NASA,2009.
[2] RABOURDIN A, MAURICE J B, DIETERICH O, et al. Blue pulse active rotor control at airbus helicopters-new EC145 demonstrator and flight test results[C]//AHS 70th Annual Forum,2014:1-24.
[3] DIETERICH O, RABOURDIN A, MAURICE J B, et al. Blue Pulse active rotor control by trailing edge flaps at airbus helicopters[C]//41st European Rotorcraft Forum, 2015:1-13.
[4] STRAUB F K, BYRNS J EV. Application of higher harmonic blade feathering on the oh-6a helicopter for vibration reduction:NASA Contractor Report 4031[R]. Washington,D.C.:NASA, 1986.
[5] HABER A, JACKLIN S A, SIMONE G. Development manufacturing and component testing of an individual blade control system for a uh-60 helicopter rotor[C]//American Helicopter Society Aerodynamics, Acoustics, and Evaluation Technical Specialists Meeting, 2002:1-10.
[6] ARNOLD U T P. Recent flight test results from the ch-53g helicopter[C]//29th European Rotorcraft Forum, 2003:1-15.
[7] ARNOLD U T P, FURST D. Closed loop IBC results from ch-53g flight tests[J]. Aerospace Science and Technology, 2005, 9(5):421-435.
[8] HALL S R, PRECHTL E F. Preliminary testing of a Mach-scaled active rotor blade with a trailing-edge servo-flap[C]//Smart Structures and Materials 1999:Smart Structures and Integrated Systems, 1999:14-21.
[9] PRECHTL E F, HALL S R. Closed-loop vibration control experiments on a rotor with blade mounted actuation[C]//41st Structures, Structural Dynamics, and Materials Conference and Exhibit. Reston,VA:AIAA, 2000:1714-1728.
[10] ELIF A E, PFALLER R, DENECKE U, et al. Piezo active rotor blade-challenges and solutions[C]//American Helicopter Society 69th Annual Forum. Reston,VA:AIAA, 2013:1-14.
[11] LEE T, CHOPRA I. Design of piezostack-driven trailing-edge flap actuator for helicopter rotors[J].Smart Materials and Structures, 2001,10(1):15-24.
[12] LEE T, CHOPRA I. Design issues of a high-stroke, on-blade piezostack actuator for a helicopter rotor with trailing-edge flaps[J]. Journal of Intelligent Material Systems and Structures, 2000, 11(5):328-342.
[13] CROZIER P, LECONTE P, DELRIEUX Y, et al. Wind-tunnel tests of a helicopter rotor with active flaps[C]//32nd European Rotorcraft Forum, 2006:1-16.
[14] VISWAMURTHY S R, RAO A K, GANGULI R. Dynamic hysteresis of piezoelectric stack actuators used in helicopter vibration control:Experiments and simulations[J]. Smart Materials and Structures, 2007, 16(4):1109-1119.
[15] VISWAMURTHY S R, GANGULI R. Effect of piezoelectric hysteresis on helicopter vibration control using trailing-edge flaps[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(5):1201-1209.
[16] VISWAMURTHY S R, GANGULI R. Modeling and compensation of piezoelectric actuator hysteresis for helicopter vibration control[J]. Sensors and Actuators A:Physical, 2007, 135(2):801-810.
[17] MALLICK R, GANGULI R, BHAT M S. An experimental and numerical study of piezoceramic actuator hysteresis in in helicopter active vibration control[J]. Journal of Aerospace Engineering, 2014, 228(5):690-705.
[18] MUIR E R, LIU L, FRIEDMANN P P, et al. Hysteresis characterization in piezoceramic stack actuator and its influence on vibration and noise reduction in helicopters using actively controlled flaps[C]//51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston,VA:AIAA, 2010:1-20.
[19] MUIR E R, LIU L, FRIEDMANN P P, et al. Effect of piezoelectric actuator hysteresis on helicopter vibration and noise reduction[J]. Journal of Guidance, Control, and Dynamics, 2012, 35(4):1299-1311.
[20] HASSANI V, TJAHJOWIDODO T, THANH N D. A survey on hysteresis modeling identification and control[J]. Mechanical Systems and Signal Processing, 2014, 49(1-2):209-233.
[21] CHANG C M, STRANO S, TERZO M. Modeling of hysteresis in vibration control systems by means of Bouc-Wen model[J]. Shock and Vibration, 2016, 2016:1-14.
[22] FUJII F, TATEBATAKE K I, MORITA K, et al. A Bouc-Wen model-based compensation of the frequency-dependent hysteresis of a piezoelectric actuator exhibiting odd harmonic oscillation[J]. Actuators, 2018, 7(3):1-16.
[23] 杨晓京,彭芸浩,李尧.压电微位移台的动态迟滞建模及实验验证[J].光学精密工程, 2016, 24(9):2255-2261. YANG X J, PENG Y H, LI Y. Dynamic hysteresis modeling and experimental verification of piezoelectric positioning stage[J]. Optics and Precision Engineering, 2016, 24(9):2255-2261(in Chinese).
[24] 刘士明,杨卫东,虞志浩,等.带后缘小翼的旋翼振动载荷计算[J].航空动力学报, 2016, 31(6):1496-1503. LIU S M, YANG W D, YU Z H, et al. Vibratory loads prediction of rotor with trailing edge flaps[J]. Journal of Aerospace Power, 2016, 31(6):1496-1503(in Chinese).
[25] 周金龙,董凌华,杨卫东,等.基于加权最小二乘法辨识的后缘襟翼智能旋翼振动载荷闭环控制仿真研究[J].振动与冲击, 2019, 38(4):237-244. ZHOU J L, DONG L H, YANG W D, et al. Closed-loop vibration control simulation of helicopter active rotor with trailing-edge flaps based on weighted-least-squares-error identification method[J]. Journal of Vibration and Shock, 2019, 38(4):237-244(in Chinese).
[26] HEFFERNAN P M, GAUBERT M. Structural and aerodynamic loads and performance measurements of an SA349/2 helicopter with an advanced geometry rotor:NASA-TM-88370[R].Washington,D.C.:NASA, 1986.
文章导航

/