材料工程与机械制造

面向复杂回转体的T700级碳纤维/双马树脂材料铺放适应性

  • 谢林杉 ,
  • 陈浩然 ,
  • 王浩宇
展开
  • 航空工业成都飞机工业(集团)责任有限公司, 成都 610073

收稿日期: 2019-07-09

  修回日期: 2019-11-14

  网络出版日期: 2019-11-14

Placement suitability of T700 carbon fiber/bismaleimide resin prepreg for complex rotary bodies in AFP

  • XIE Linshan ,
  • CHEN Haoran ,
  • WANG Haoyu
Expand
  • AVIC Chengdu Aircraft Industry(Group) Co., Ltd., Chengdu 610073, China

Received date: 2019-07-09

  Revised date: 2019-11-14

  Online published: 2019-11-14

摘要

为了研究面向复杂回转体的T700级碳纤维/双马树脂材料的铺放适应性,测试了3种T700级碳纤维/双马树脂材料的T型剥离强度及悬垂性,进行了曲率铺放性能对比研究,确定了最佳的T700级碳纤维/双马树脂材料。针对该材料,研究了不同工艺参数(铺放温度、铺放压力、铺放速度)在不同转向半径下对铺放质量的影响,并提出一种新的铺放质量评定方法。材料对比实验结果表明,在一定范围内,适当提高材料的刚性和层间黏结力对材料的铺放性能有明显改善,其中提高层间黏结力效果更加显著,并最终选用T700级碳纤维/双马树脂材料3作为复杂回转体的铺放材料。工艺优化实验发现,当铺放速度小于32 mm/s时,极限转向半径降低至1 000 mm。结合铺放效率,获得复杂回转体的最佳铺放工艺参数为F=800 N、T=40 ℃、v=32 mm/s,且在2 h内进行下层铺放,从而提高铺放质量及铺放效率,解决工程化应用问题。

本文引用格式

谢林杉 , 陈浩然 , 王浩宇 . 面向复杂回转体的T700级碳纤维/双马树脂材料铺放适应性[J]. 航空学报, 2020 , 41(4) : 423279 -423279 . DOI: 10.7527/S1000-6893.2019.23279

Abstract

To study the placement suitability of T700 carbon fiber/bismaleimide resin prepreg for complex rotary bodies in Automated Fiber Placement (AFP), the T-type peel strength and drapability of three types of T700 carbon fiber/bismaleimide resin prepreg were tested, and the placement performances on the curvature were compared. In this paper, the effects of the processing parameters (lay-up temperature, lay-up velocity, and lay-up pressure) on the placement quality at different tow steering radii were investigated, and we proposed a new assessment method for placement quality. The comparison of material experiments exhibited that within limits, the placement quality improved significantly with the increase of the stiffness and interlaminar tack, which the latter is more significant. Finally, the T700 carbon fiber/bismaleimide resin prepreg 3 was selected as the placement material for the complex rotary bodies experiment. The process optimization experiment showed that the limit tow steering radius reduced to 1 000 mm,when the lay-up velocity was less than 32 mm/s. Combined with the placement efficiency, the optimal processing parameters for complex rotary bodies are F=800 N, T=40 ℃, v =32 mm/s, and the placement interval is 2 h. The proposed method improves the quality and efficiency of placement, successfully solving engineering application problems.

参考文献

[1] 闫超,陈萍.自动铺丝技术及其在飞机复合材料构件制造中的应用[J].玻璃钢/复合材料, 2017(11):101-105. YAN C, CHEN P. Automated fiber placement and its application in aircraft composite parts[J]. Fiber Rein-forced Plastics/Composites, 2017(11):101-105(in Chinese).
[2] 张建宝,赵文宇,王俊锋,等.复合材料自动铺放工艺技术研究现状[J].航空制造技术, 2014(16):80-83,94. ZHANG J B, ZHAO W Y, WANG J F, et al. Research status of automated placement processing technology of composites[J]. Aeronautical Manufacturing Technology, 2014(16):80-83,94(in Chinese).
[3] 韩振宇,王振宇,边东岩,等.自动铺丝构件缺陷形成机理的研究进展[J].纤维复合材料, 2014, 31(4):3-7. HAN Z Y, WANG Z Y, BIAN D Y, et al. A review on advances in defect formation mechanism of automated fiber placement components[J]. Fiber Composites, 2014, 31(4):3-7(in Chinese).
[4] 马志涛,李初晔,冯长征,等.铺放压力和铺放压辊对丝束铺放质量影响的研究[J].航空制造技术, 2018,61(20):88-91,101. MA Z T, LI C Y, FENG C Z, et al. Effect of placement pressure and placement roller on quality of tows placement[J]. Aeronautical Manufacturing Technology, 2018,61(20):88-91,101(in Chinese).
[5] NIMA B, MEHDI H. An experimental and simulative study on the defects appeared during tow steering in automated fiber placement[J]. Composites Part A:Applied Science and Manufacturing, 2018, 113:122-131.
[6] RAMY H, CLINT S, STEPHEN J W, et al. Automated fiber placement defect identity cards:cause, anticipation, existence, significance, and progression[C]//SAMPE 18, 2018.
[7] 李勇,王敏,肖军,等. NY9200GA树脂体系预浸料自动铺放粘结性工艺研究[J].南京航空航天大学学报, 2015, 47(4):571-578 LI Y, WANG M, XIAO J, et al. Research on prepreg tack of NY9200GA resin series for automatic placement process[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2015, 47(4):571-578(in Chinese).
[8] 黄新杰,肖军,赵聪,等.工艺参数对平面曲线铺放过程丝束铺放效果的影响[J].玻璃纤维, 2016(1):13-18,50. HUANG X J, XIAO J, ZHAO C, et al. The influence of process parameters on result of towpreg during the curve trajectory placement on the plan[J]. Fiber Class, 2016(1):13-18,50(in Chinese).
[9] 黄新杰,肖军,赵聪,等.自动铺丝成型工艺参数优化[J].玻璃纤维, 2015(6):20-26. HUANG X J, XIAO J, ZHAO C, et al. Process parameter optimization for automatic fiber placement[J]. Fiber Class, 2015(6):20-26(in Chinese).
[10] CROSSLEY R, SCHUBEL P, WARRIOR N. The experimental determination of prepreg tack and dynamic stiffness[J]. Composites Part A:Applied Science and Manufacturing, 2012, 43(3):423-434.
[11] ZHANG P, SUN R, ZHAO X, et al. Placement suitability criteria of composite tape for mould surface in automated tape placement[J]. Chinese Journal of Aeronautics, 2015, 28(5):1574-1581.
[12] ZHAO C, XIAO J, HUANG W, et al. Layup quality evaluation of fiber trajectory based on prepreg tow deformability for automated fiber placement[J]. Journal of Reinforced Plastics and Composites, 2016, 35(21):1576-1585.
[13] 方宜武,王显峰,顾善群,等.自动铺丝过程中预浸料的侧向弯曲[J].材料工程, 2015, 43(4):47-52. FANG Y W, WANG X F, GU S Q, et al. Lateral bending of prepreg during automated fiber placement[J]. Journal of Materials Engineering, 2015, 43(4):47-52(in Chinese).
[14] CHEN J H, TERESA C K, MEHDI H, et al. Impact of layup rate on the quality of fiber steering/cut-restart in automated fiber placement processes[J]. Science and Engineering of Composite Materials, 2015, 22(2):165-173.
[15] MOORE D R. An Introduction to the special issue on peel testing[J]. International Journal of Adhesion and Adhesives, 2007, 28(4):153-157.
[16] 王敏.自动铺放预浸料层间粘结性能研究[D].南京:南京航空航天大学,2015:16-18. WANG M. Research on the prepreg interlaminar tack for automated placement[D]. Nanjing:Nanjing University of Aeronautics and Astronautic, 2015:16-18(in Chinese).
[17] MUHSAN B, MEHDI H. Wrinkle formation during steering in automated fiber placement:Modeling and experimental verification[J]. Journal of Reinforced Plastics and Composites, 2018, 37(6):396-409.
[18] 原崇新,李妍,潘杰,等.自动铺丝过程中的典型缺陷及原因分析[J].航空制造技术, 2019, 62(4):66-74. YUAN C X, LI Y, PAN J, et al. Typical defects and causes analysis of automated fiber placement[J]. Aeronautical Manufacturing Technology, 2019, 62(4):66-74(in Chinese).
[19] BAKHSHI N, HOJJATI M. Time-dependent wrinkle formation during tow steering in automated fiber placement[J]. Composites Part B:Engineering, 2019, 165:586-593.
[20] SMITH R, QURESHI Z, SCAIFE R, et al. Limitations of processing carbon fibre reinforced plastic/polymer material using automated fibre placement technology[J]. Journal of Reinforced Plastics and Composites, 2016, 35(21):1527-1542.
[21] 黄文宗,孙容磊,张鹏,等.预浸料的铺放适宜性评价(二)-铺覆性篇[J].玻璃钢/复合材料, 2013(Z3):3-8. HUANG W Z, SUN R L, ZHANG P, et al. Assessment for placement suitability of prepreg-part of drape[J]. Fiber Rein-forced Plastics/Composites, 2013(Z3):3-8(in Chinese).
[22] 彭啸.基于自动铺放工艺的预浸料丝束转向铺贴质量表征与调控[D].杭州:浙江大学,2019:36-39. PENG X. Quality characterization and regulation of prepreg tow steering based on automatic placement process[D]. Hangzhou:Zhejiang University, 2019:36-39(in Chinese).
[23] 舒展,彭啸,李发飞,等.基于探针试验的预浸料黏性内聚力模型[J].航空学报, 2018, 39(2):421416. SHU Z, PENG X, LI F F, et al. Cohesive zone model for prepreg tack based on probe test[J]. Acta Aeronautica et Astronautica Sinic, 2018, 39(2):421416(in Chinese).
[24] 张鹏,孙容磊,连海涛,等.自动铺带铺层贴合形成机制[J].复合材料学报, 2014, 31(1):40-48. ZHANG P, SUN R L, LIAN H T, et al. Bonding mechanism of ply during automated tape laying process[J]. Acta Materiae Compositae Sinica, 2014, 31(1):40-48(in Chinese).
[25] GUTOWSKI T, BONHOMME L. The mechanics of prepreg conformance[J]. Journal of Composite Materials, 1988, 22(3):204-223.
[26] 段沐枫,秦田亮,沈裕峰,等.自动铺丝最小间隙路径规划与复合材料锥壳结构制造[J].航空学报,2019,40(2):522423. DUAN M F, QIN T L, SHEN Y F, et al. Minimum gap layup algorithms for automatic fiber plaoement and manufacture of conic composite structure[J]. Acta Aeronautica et Astronatutica Sinica, 2019, 40(2):522423(in Chinese).
文章导航

/