电子电气工程与控制

单一飞行员驾驶模式技术

  • 王淼 ,
  • 肖刚 ,
  • 王国庆
展开
  • 上海交通大学 航空航天学院, 上海 200240

收稿日期: 2019-10-08

  修回日期: 2019-11-08

  网络出版日期: 2019-11-07

基金资助

国家自然科学基金(61973212,61673270);国家重点基础研究发展规划(2014CB744903);上海市工业强基专项(GYQJ-2017-5-08);上海市科委科研计划(17DZ1204304)

Single pilot operation mode technology

  • WANG Miao ,
  • XIAO Gang ,
  • WANG Guoqing
Expand
  • School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2019-10-08

  Revised date: 2019-11-08

  Online published: 2019-11-07

Supported by

National Natural Science Foundation of China (61973212, 61673270); National Program on Key Basic Research Project (2014CB744903); Shanghai Industrial Strengthening Project(GYQJ-2017-5-08); Shanghai Science and Technology Committee Research Project (17DZ1204304)

摘要

飞机驾驶机组由20世纪50年代的5乘员驾驶模式减少到了目前的双乘员,然而为了降低航空公司运营成本以及减少双乘员认知不同、操作不一致所带来的安全性隐患,开展了单一飞行员驾驶(SPO)模式研究,SPO是新一代商用飞机发展方向核心技术之一。单一飞行员驾驶模式是描述面向商用飞机单一驾驶员、驾驶舱智能自动系统以及地面航空公司操作员协同实现的飞行驾驶模式。本文首先对单一飞行员驾驶模式系统组成及其系统架构进行了描述,并对比分析了单一飞行员驾驶模式下飞行员、空管系统、航空公司三方协同过程与现有模式的差异点;然后,针对商用飞机主要飞行过程,建立了单一飞行员驾驶模式下各飞行过程组织架构;最后,搭建了面向SPO的远程操控演示验证系统,经过飞行员操作评价,基本可以获取到机上操作所具备的驾驶感受,同时对于飞行计划更改、紧急情况处理等方面更为便利。通过上述内容研究,为中国商用飞机开展单一飞行员驾驶发展奠定了一定的技术基础。

本文引用格式

王淼 , 肖刚 , 王国庆 . 单一飞行员驾驶模式技术[J]. 航空学报, 2020 , 41(4) : 323541 -323541 . DOI: 10.7527/S1000-6893.2019.23541

Abstract

Over the last seventy years, the minimum crew complement for air carrier operation has fallen from five in the 1950s to two today. However, in order to reduce the costs of airlines and the safety risks caused by different perceptions and inconsistent operations of two pilots, Single Pilot Operation (SPO) is the key technology for the next generation operation. SPO mode is the collaborative implementation among single pilot, cockpit intelligent automation, and ground airlines’ operator. In this paper, we describe the system architecture for single pilot operation and its components. The differences between the current operation mode and the single pilot operation in the collaboration among pilot, air traffic management system and airlines, are also introduced. According to the main flight process of commercial aircraft, the organization architecture for each flight process under SPO is presented. The established remote control demonstration and validation system are evaluated by pilots operating, and one dispatcher. The results show our remote control system based on SPO can get the base operating feeling as onboard operating, more conveniently in flight re-planning and emergency situation operation. The above research would be the foundation for the SPO development of commercial aircraft in China.

参考文献

[1] MCLUCAS J L, LEAF H W. Report of the President's task force on aircraft crew complement[R]. Washington, D.C.:President's Task Force on Aircraft Crew Complement, 1981.
[2] WU S C, MOGFORD R M, BATTISTE V, et al. NASA's single-pilot operations technical interchange meeting:Proceedings and findings:NASA/CP-2013-216513[R]. Washington, D.C.:NASA, 2013.
[3] SCHUTTE P C, GOODRICH K H, COX D E, et al. The naturalistic flight deck system:An integrated system concept for improved single-pilot operations:NASA/TM-2007-215090[R]. Washington, D.C.:NASA, 2007.
[4] SUMMER L, BRANDT J, LACHTER V B, et al. Pilot situation awareness and its implications for single pilot operations:Analysis of a human-in-the-loop study[C]//6th International Conference on Applied Human Factors and Ergonomics (AHFE 2015) and the Affiliated Conferences, 2015.
[5] HARRIS D. A human-centered design agenda for the development of single crew operated commercial aircraft[J]. Aircraft Engineering and Aerospace Technology, 2007, 79(5):518-526.
[6] HARRIS D, STANTON N A, STARR A. Spot the difference:Operational event sequence diagrams as a formal method for work allocation in the development of single-pilot operations for commercial aircraft[J]. Ergonomics, 2015, 58(11):1773-1791.
[7] SPRENGART S M, NEIS S M, SCHIEFELE J. Role of the human operator in future commercial reduced crew operations[C]//37th Digital Avionics Systems Conference, 2018.
[8] MITCHELL S J, EVANS A D. Flight safety and medical incapacitation risk of airline pilots[J]. Aviation, Space, and Environmental Medicine, 2004, 75(3):260-268.
[9] EVANS S, RADCLIFFE S A. The annual incapacitation rate of commercial pilots[J]. Aviation, Space, and Environmental Medicine, 2012, 83(1):42-49.
[10] CALDWELL J A, MALLIS M M, CALDWELL J L, et al. Fatigue countermeasures in aviation[J]. Aviation, Space, and Environmental Medicine, 2009, 80(1):29-59.
[11] STANTON N A, HARRIS D, STARR A. The future flight deck:Modelling dual, single and distributed crewing options[J]. Applied Ergonomics, 2016, 53:331-342.
[12] CUMMINGS M L, BRUNI S. Collaborative human-automation decision making[M]. Berlin:Springer, 2009:437-447.
[13] GRAHAM J, HOPKINS C, LOEBER A, et al. Design of a single pilot cockpit for airline operations[C]//Systems and Information Engineering Design Symposium (SIEDS), 2014.
[14] LIU J, GARDI A, RAMASAMY S, et al. Cognitive pilot-aircraft interface for single-pilot operations[J]. Knowledge-Based Systems, 2016, 112:37-53.
[15] DANIELA S, NEVILLE A S. Considering single-piloted airliners for different flight durations:An issue of fatigue management[J]. Advances in Intelligent Systems and Computing, 2020, 964:683-694.
[16] ARANGO P A, FERDINAND B. A holographic checklist assistant for the single pilot[C]//Integrated Communications, Navigation and Surveillance Conference, 2019.
[17] DAO A V, KOLTAI K, CALS S D, et al. Evaluation of a recommender system for single pilot operations[J]. Procedia Manufacturing, 2015, 3:3070-3077.
[18] KOLTZ M T, ROBERTS Z S, SWEET J, et al. An investigation of the harbor pilot concept for single pilot operations[J]. Procedia Manufacturing, 2015, 3:2937-2944.
[19] VU K L, JOEL L, VERNOL B, et al. Single pilot operations in domestic commercial aviation[J]. Human Factors, 2018, 60(6):755-762.
[20] 董大勇,俞金海,李宝峰,等.民机驾驶舱人为因素适航符合性验证技术[J].航空学报, 2016, 37(1):310-316. DONG D Y, YU J H, LI B F, et al. Airworthiness compliance certification technology of civil aircraft flight deck human factor[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1):310-316(in Chinese).
[21] 中国民用航空局.运输类飞机适航标准:CCAR-25-R4[S].北京:中国民用航空局,2016. Civil Aviation Administration of China. Airworthiness Standards for transport aircraft:CCAR-25-R4[S]. Beijing:CAAC, 2016(in Chinese).
[22] LIM Y X, VINCENT B C, RAMASAMY S, et al. Commercial airline single-pilot operations system design and pathways to certification[J]. IEEE Aerospace and Electronic Systems Magazine, 2017, 32(7):4-21.
[23] NEIS S M, KLINGAUF U, SCHIEFELE J. Classification and review of conceptual frameworks for commercial single pilot operations[C]//IEEE/AIAA 37th Digital Avionics Systems Conference. Piscataway, NJ:IEEE Press, 2018.
[24] 王国庆,谷青范,王淼,等.新一代综合化航空电子系统架构技术研究[J].航空学报, 2014, 35(6):1473-1486. WANG G Q, GU Q F, WANG M, et al. Research on the architecture technology for new generation integrated avionics system[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(6):1473-1486(in Chinese).
[25] 王国庆,谷青范,吴建民,等.新一代飞机任务系统概念与架构[J].航空学报, 2015, 36(8):2735-2752. WANG G Q, GU Q F, WU J M, et al. Concept and architecture for new generation aircraft mission system[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8):2735-2752(in Chinese).
文章导航

/