Aiming at the problem of insufficient supersonic directional static stability in the tailless configuration aircraft design, an aerodynamic supersonic directional augmentation method for the after-body design is presented. Firstly, the design idea of after-body supersonic directional augmentation was made clear by the comparative analysis of the directional static stability and surface flow field between flat after-body and conventional after-body of tailless configuration. And then the influence law of the after-body shape on the supersonic directional static stability was analyzed based on the parametric configuration. Finally, the effectiveness of the after body supersonic directional stability augmentation method was verified by the comprehensive aerodynamic characteristics numerical evaluation of the typical after-body scheme. The results show that the increment of after-body lateral projected area, after-body surface spine curves and after-body surface section curves are the three most important parameters which affect the ability of after body supersonic directional augmentation. Compared to the conventional after-body, the after-body shape designed by the supersonic directional augmentation method can dramatically decrease the directional static instability of the tailless configuration at transonic and supersonic flight with drag basically unchanged.
[1] 车竞, 何开锋, 钱炜祺. 制空型无人机的关键技术、气动布局及特性[J]. 空气动力学学报, 2017, 35(1):13-26. CHE J, HE K F, QIAN W Q. Key technique and aerodynamic configuration characteristic of UCAV with command of the air[J]. Acta Aerodynamica Sinica, 2017, 35(1):13-26(in Chinese).
[2] 孙隆和. 第六代战斗机的竞争[J]. 电光与控制, 2012, 19(10):1-7. SUN L H. The competition of the sixth generation fighters[J]. Electronics Optics and Control, 2012, 19(10):1-7(in Chinese).
[3] 石怀林, 武卫兵, 张立, 等. 美军第六代战斗机典型技术特征[J]. 国防科技, 2010, 31(4):10-13. SHI H L, WU W B, ZHANG L, et al. A review on the typical technic characters of fighters of the sixth generation in the U.S. air force[J]. National Defense Science and Technology, 2010, 31(4):10-13(in Chinese).
[4] 李金梁, 涂泽中, 刘振庭. 美第六代战斗机研究进展情况[J]. 电光与控制, 2014, 21(6):3-8. LI J L, TU Z Z, LIU Z T. The research progress of the sixth generation fighter of USAF[J]. Electronics Optics and Control, 2014, 21(6):3-8(in Chinese).
[5] SATHE A, PANT R. Conceptual design studies of an unmanned combat aerial vehicle:AIAA-2010-9306[R]. Reston:AIAA, 2010.
[6] ADDINGTON G A, MYATT J H. Control surface deflection effects on the innovative control effectors (ICE 101) design:AFRL-VA-WP-T R-2000-3027[R]. Reston:AFRL, 2010.
[7] BOWLUS J A, MULTHOPP D, BANDA S S. Challenges and opportunities in tailless aircraft stability and control:AIAA-1997-3830[R]. Reston:AIAA, 1997.
[8] DORSETT K M, MEHL D R. Innovative control effectors(ICE):WL-TR-96-3043[R]. Reston:AFRL, 1996.
[9] 马松辉, 吴成富, 陈怀民. 飞翼飞机稳定性与操纵性研究[J]. 飞行力学, 2006, 24(3):17-21. MA S H, WU C F, CHEN H M. Study on stability and maneuverability of flying wing aircraft[J]. Flight Dynamics, 2006, 24(3):17-21(in Chinese).
[10] GILLARD W J, DORSETT K M. Directional control for tailless aircraft using all moving tips:AIAA-1997-3487[R]. Reston:AIAA, 1997.
[11] 李忠剑, 马东立. 飞翼布局阻力类偏航操纵装置操纵特性分析[J]. 北京航空航天大学学报, 2014, 40(5):695-700. LI Z J, MA D L. Control characteristics analysis of drag yawing control devices of flying wing configuration[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(5):695-700(in Chinese).
[12] 张彬乾, 马怡, 褚胡冰, 等. 小展弦比飞翼布局航向控制的组合舵面研究[J]. 航空学报, 2013, 11(34):2436-2443. ZHANG B Q, MA Y, CHU H B, et al. Investigation on combined control surfaces for the yaw control of low aspect ratio flying wing configuration[J]. Acta Aeronautica et Astronautica Sinica, 2013, 11(34):2436-2443(in Chinese).
[13] 单继祥, 黄勇, 苏继川, 等. 小展弦比飞翼布局新型嵌入面航向控制特性研究[J]. 空气动力学学报, 2015, 33(3):296-301. SHAN J X, HUANG Y, SU J C, et al. Effect of the novel embedded control surfaces on direction control characteristic of low-aspect-ratio flying-wing configuration[J]. Acta Aerodynamica Sinica, 2015, 33(3):296-301(in Chinese).
[14] BOLSUNOVSKY A L, BUZOVERYA N P, GUREVICH B I, et al. Flying wing problems and decisions[J]. Aircraft Design, 2001, 4:193-219.
[15] DMITRIEV V G, DENISOV V E, GUREVICH B I, et al. The flying wing concept chances and risks:AIAA-2003-2887[R]. Reston:AIAA, 2003.
[16] ESTENBAN S. Static and dynamic analysis of an unconventional plane flying wing:AIAA-2001-4010[R]. Reston:AIAA, 2001.
[17] 冯立好, 王晋军, 于东升. 多操纵面无尾布局飞机横航向控制[J]. 北京航空航天大学学报, 2010, 36(9):1038-1042. FENG L H, WANG J J, YU D S. Lateral-directional control of tailless aircraft with multiple control surfaces[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(9):1038-1042(in Chinese).
[18] 李林, 马超, 王立新. 小展弦比飞翼布局飞机稳定特性[J]. 航空学报, 2007, 28(6):1312-1317. LI L, MA C, WANG L X. Stability features of low aspect-ratio flying wings[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(6):1312-1317(in Chinese).
[19] STENFELT G, RINGERTZ U. Yaw control of a tailless aircraft configuration[J]. Journal of Aircraft, 2010, 47(5):1807-1810.
[20] 宋磊, 杨华, 颜旭峰, 等. 飞翼无增稳条件下横航向动稳定设计方法[J]. 系统工程与电子技术, 2015, 37(11):2561-2565. SONG L, YANG H, YAN X F, et al. Increasing the flying wing lateral-directional dynamic stability without relying on augmentation system[J]. Systems Engineering and Electronics, 2015, 37(11):2561-2565(in Chinese).
[21] 赵俊波, 沈清. 升力体布局飞行器偏航气动增稳方法研究[J]. 空气动力学学报, 2016, 34(3):322-326. ZHAO J B, SHEN Q. Directional stability augmentation method for a lifting body configuration[J]. Acta Aerodynamica Sinica, 2016, 34(3):322-326(in Chinese).