电子电气工程与控制

基于落点预测的高旋火箭弹弹道修正算法

  • 杨泗智 ,
  • 龚春林 ,
  • 郝波 ,
  • 吴蔚楠 ,
  • 谷良贤
展开
  • 1. 西北工业大学 航天学院, 西安 710072;
    2. 上海航天技术研究院, 上海 201109

收稿日期: 2019-09-02

  修回日期: 2019-09-28

  网络出版日期: 2019-11-07

基金资助

国家自然科学基金(51505385)

Ballistic trajectory correction algorithms of high-spin rocket based on impact point prediction

  • YANG Sizhi ,
  • GONG Chunlin ,
  • HAO Bo ,
  • WU Weinan ,
  • GU Liangxian
Expand
  • 1. College of Astronautics, Northwestern Polytechnical University, Xi'an 710072, China;
    2. Shanghai Academy of Spaceflight Technology, Shanghai 201109, China

Received date: 2019-09-02

  Revised date: 2019-09-28

  Online published: 2019-11-07

Supported by

National Natural Science Foundation of China (51505385)

摘要

高旋火箭弹的修正控制是基于等效力实现的二维弹道修正控制,由于弹体存在陀螺进动和马格努斯效应,在控制力作用下产生的附加攻角引起的升力与控制力的矢量合为等效力,其大小与方向在控制过程中不断变化,不能简单根据偏差量(修正量)的比例关系来确定控制力的方向。基于此,分析了控制力与等效力的关系,提出了一种基于弹道落点预测的控制算法。首先利用弹道落点预测模型实时预测落点与目标的偏差量,然后利用小扰动法构造偏差量对控制量的敏感系数矩阵,通过偏差量与敏感系数矩阵解算出纵、横两个方向的需用控制量。采用修正前后速度矢量的位置关系得到控制量的合矢量及其方位角,并利用控制量的合矢量与等效力计算出控制周期,在控制周期内按照等效力方位角调整控制力的方向实现对高旋火箭弹的精确控制,解决了非线性耦合问题。仿真结果表明该算法具有较高的控制精度,为工程应用提供理论依据。

本文引用格式

杨泗智 , 龚春林 , 郝波 , 吴蔚楠 , 谷良贤 . 基于落点预测的高旋火箭弹弹道修正算法[J]. 航空学报, 2020 , 41(2) : 323421 -323421 . DOI: 10.7527/S1000-6893.2019.23421

Abstract

The trajectory corrective control of high-spin rocket is a two-dimensional correction control based on equivalent force. Due to gyro precession and the Magnus effect of high-spin rocket, the equivalent force is formed by the control force, and the force caused by the additional angle of attack under the action of the control force, the magnitude and direction of the equivalent force is constantly changing during the control. Therefore, the direction of control force can't be determined simply by the proportional relation of deviation (correction quantity). Based on this, the relationship between control force and equivalent force is analyzed in this paper. A corrective algorithm based on trajectory impact point prediction is proposed. At first, the deviation between the rocket's landing point and its target position is predicted in real-time using the impact point prediction model. Then the paper established corrective sensitivity coefficient matrix based on the small perturbation method, and the control quantity in both longitudinal and transverse directions were obtained through the deviation and sensitivity coefficient matrix. The combined vector and azimuth of the control quantity were obtained by using the relationship of velocity vector before and after the correction control, and the control period was calculated by using the control quantity and the equivalent force. In the control period, the direction of the control force was adjusted according to the azimuth of the equivalent force angle, the accurate control of the high-spin rocket was obtained, and the problem of non-linear coupling was solved. The simulation results show that the algorithm has high control accuracy, providing theoretical basis for engineering application.

参考文献

[1] 许诺, 于剑桥, 王亚飞. 基于周期平均的固定翼双旋弹弹道修正方法[J]. 航空学报,2015, 36(9):2892-2899. XU N,YU J Q,WANG Y F. Trajectory correcting method of fixed-canard dual-spin projectiles based on period average[J]. Acta Aeronautica et Asrtonautica Sinica, 2015, 36(9):2892-2899(in Chinese).
[2] GAGNON E, LAUZON M. Course correction fuze concept analysis for in-service 155mm spin-stabilized gunnery projectiles[C]//AIAA Guidance, Navigation and Control Conference and Exhibit. Reston, VA:AIAA, 2008:1-20.
[3] THEODOULIS S, GASSMANN V, WERNERT P. Guidance and control design for a class of spin-stabilized fin-controlled projectiles[J]. Journal of Guidance, Control and Dynamics, 2013, 36(2):517-531.
[4] WERNERT P, LEOPOLD F, BIDINO D. Wind tunnel tests and open-loop trajectory simulations for a 155 mm canards guided spin stabilized projectile[C]//AIAA Atmospheric Flight Mechanics and Exhibit. Reston, VA:AIAA, 2008:2-4.
[5] COSTELLO M. Modeling and simulation of a differential roll projectile[C]//Modeling and Simulation Technologies Conference. Reston, VA:AIAA, 1998:490-499.
[6] COSTELLO M, PETERSON A. Linear theory of dual-spin projectile in atmospheric flight[J]. Journal of Guidance, Control and Dynamics, 2000, 23(5):789-797.
[7] 王毅, 宋卫东, 佟德飞. 固定鸭舵式弹道修正弹二体系统建模[J]. 弹道学报, 2014, 26(4):36-41. WANG Y, SONG W D, TONG D F. Modeling of two-rigid-body system for trajectory correction projectile with fixed-canard[J]. Journal of Ballistics, 2014, 26(4):36-41(in Chinese).
[8] 许诺, 于剑桥, 王亚飞, 等. 固定翼双旋弹动力学特性分析[J]. 兵工学报, 2015, 36(4):602-609. XU N,YU J Q,WANG Y F,et al.Analysis of dynamic characteristics of fixed-wing dual-spin projectiles[J]. Acta Armamenta Rii, 2015, 36(4):602-609(in Chinese).
[9] 王钰, 王晓鸣, 程杰, 等. 基于等效力方法的双旋弹侧向控制力落点响应分析[J]. 兵工学报, 2016,37(8):1379-1386. WANG Y, WANG X M, CHENG J, et al. Analysis on impact point response of a dual-spin projectile with lateral force based on equivalent force method[J]. Acta Armamenta Rii, 2016, 37(8):1379-1386(in Chinese).
[10] 张鑫, 姚晓先, 杨忠, 等. 周期平均控制下固定翼双旋弹角运动特性分析[J]. 航空学报, 2019, 40(4), 322452. ZHANG X, YAO X X, YANG Z, et al. Analysis of angular motion of dual-spin projectile with fixed-canards under period average control[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(4), 322452(in Chinese).
[11] 王毅, 宋卫东, 郭庆伟, 等. 固定鸭舵式二维弹道修正弹稳定性分析[J].军械工程学院学报,2015,27(3):16-23 WANG Y, SONG W D, GUO Q W, et al. Stability analysis of two-dimension trajectory correction mortar with fixed-canard[J]. Journal of Ordnance Engineering College, 2015, 27(3):16-23(in Chinese).
[12] WERNERT P. Stability analysis for canard guided dual-spin stabilized projectiles[C]//AIAA Atmospheric Flight Mechanics Conference and Exhibit. Reston, VA:AIAA, 2009:2-4.
[13] WERNERT P, THEODOULIS S. Modeling and stability analysis for a class of 155mm spin-stabilized projectiles with course correction fuse(CCF)[C]//Proceedings of the 2011 AIAA Atmospheric flight Mechanics Conference and Exhibit. Reston, VA:AIAA, 2011:1-13.
[14] 王毅, 宋卫东, 宋谢恩, 等.固定鸭舵式二维弹道修正榴弹偏流特性分析[J].系统工程与电子技术, 2016, 38(6):1367-1371 WANG Y, SONG W D, SONG X E, et al. Ballistic drift analysis of two-dimensional trajectory correction projectiles with fixed-canards[J]. Systems Engineering and Electronics, 2016, 38(6):1367-1371(in Chinese).
[15] 朱大林. 双旋弹飞行特性与制导控制方法研究[D].北京:北京理工大学, 2015:98-112. ZHU D L. Research on flight characteristics, guidance, and control for a dual-spin projectile[D]. Beijing:Beijing Institute of Technology, 2015:98-112(in Chinese).
[16] 黎海清, 杨凯, 栗金平, 等. 落点预测制导律的旋转稳定弹制导控制[J]. 西安工业大学学报, 2015, 35(10):855-861. LI H Q, YANG K, LI J P, et al. Course correction for spin-stabilized projectile based on impact point predication guidance law[J]. Journal of Xi'an Technological University, 2015, 35(10):855-861(in Chinese).
[17] 郭致远, 姚晓先, 张鑫. 基于周期平均的固定舵双旋火箭弹控制方法[J]. 航空学报, 2017, 38(12):321307. GUO Z Y, YAO X X, ZHANG X. Control method for a class of fixed-canard dual-spin rockets based on period average[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(12):321307(in Chinese).
[18] 张衍儒, 肖练刚, 周华, 等. 固定翼鸭舵式双旋弹的制导控制算法研究[J].火炮发射与控制学报, 2016, 37(3):20-24. ZHANG Y R, XIAO L G, ZHOU H, et al. Research on guidance control algorithm of dual-spin projectile with fixed canards[J]. Journal of Gun Launch & Control, 2016, 37(3):20-24(in Chinese).
[19] 张衍儒, 肖练刚, 张继生, 等.旋转控制固定鸭舵的导航初始化与控制算法研究[J]. 航天控制, 2014, 32(6):34-39. ZHANG Y R, XIAO L G, ZHANG J S, et al. The navigation initialization and control algorithm of roll control fixed canards[J]. Aerospace Control, 2014, 32(6):34-39(in Chinese).
[20] COSTELLO M, PETERSON A. Linear theory of a dual-spin projectile in atmospheric flight[J]. Journal of Guidance, Control, and Dynamics, 2000, 23(5):789-797.
[21] WERNERT P. Stability analysis for canard guided dual-spin stabilized projectiles[C]//Atmospheric Flight Mechanics Conference and Exhibit. Reston, VA:AIAA, 2009:1-24.
[22] CHARLES H M. Symmetric missile dynamic instabilities[J]. Journal of Guidance and Control, 1981, 4(5):464-472.
[23] 韩子鹏.弹箭外弹道学[M].北京:北京理工大学出版社,2014:180-194. HAN Z P. Rocket exterior ballistic[M]. Beijing:Beijing Institute of Technology Press, 2014:180-194(in Chinese).
文章导航

/