流体力学与飞行力学

基于稀疏多项式混沌方法的不确定性量化分析

  • 陈江涛 ,
  • 章超 ,
  • 刘骁 ,
  • 赵辉 ,
  • 胡星志 ,
  • 吴晓军
展开
  • 中国空气动力研究与发展中心 计算空气动力研究所, 绵阳 621000

收稿日期: 2019-08-14

  修回日期: 2019-11-08

  网络出版日期: 2019-11-07

基金资助

国家数值风洞工程项目;装备预先研究项目(41406030102)

Uncertainty quantification analysis with sparse polynomial chaos method

  • CHEN Jiangtao ,
  • ZHANG Chao ,
  • LIU Xiao ,
  • ZHAO Hui ,
  • HU Xingzhi ,
  • WU Xiaojun
Expand
  • Computational Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2019-08-14

  Revised date: 2019-11-08

  Online published: 2019-11-07

Supported by

National Numerical Windtunnel Project; Equipment Pre-Research Project(41406030102)

摘要

在工程复杂外形的数值模拟过程中存在着多种来源的不确定性输入。量化模拟结果的不确定性对于工程外形的性能评估和优化设计非常重要。在多变量不确定性量化问题中,传统的分析方法需要大量的样本点,计算开销巨大,因此急需发展更加高效的工具。本文发展了非嵌入式稀疏多项式混沌方法,研究了湍流模型系数的不确定性对RAE2822翼型跨声速绕流模拟的影响和材料物性参数的不确定性对烧蚀热响应预测的影响。通过求解P1优化问题,在样本点数目小于展开多项式自由度的情况下,能够比较准确地还原量级较大的若干个自由度,捕捉到输出的主要特征,也能够合理预测输出的统计信息,包括平均值、方差和每个输入变量的全局敏感性指标等。这为工程中多变量不确定性量化问题提供了很好的解决方案。

本文引用格式

陈江涛 , 章超 , 刘骁 , 赵辉 , 胡星志 , 吴晓军 . 基于稀疏多项式混沌方法的不确定性量化分析[J]. 航空学报, 2020 , 41(3) : 123382 -123382 . DOI: 10.7527/S1000-6893.2019.23382

Abstract

Various sources of uncertainty exist in numerical simulations of industry relevant geometries. Uncertainty quantification plays an important role during the design and assessment process. The computational cost increases dramatically with the number of stochastic input variables. Therefore, more efficient approaches are necessary. This paper develops a non-intrusive sparse polynomial chaos method and investigates the effects of uncertainty in turbulence model closure coefficients on the simulation of flow over RAE2822 airfoil and the effects of uncertainty in material properties on the prediction of charring ablator thermal response are investigated. It is proved that the method is capable of recovering the freedoms of several most important bases under the condition of under-determined system by solving P1 programming problem. The prediction of system response, including mean value, variance, and the relative contribution of each closure coefficient to the variation of the output quantities, is reasonable compared with full polynomial chaos. The method provides an efficient solution to the uncertainty quantification problems in industry applications.

参考文献

[1] 王晓东, 康顺. 多项式混沌方法在随机方腔流动模拟中的应用[J]. 中国科学:技术科学, 2011,41(6):790-798. WANG X D, KANG S. Application of polynomial chaos on numerical simulation of stochastic cavity flow[J]. Sci China Tech Sci, 2011,41(6):790-798 (in Chinese).
[2] 刘智益, 王晓东, 康顺. 多元多项式混沌法在随机方腔流动模拟中的应用[J]. 工程热物理学报, 2012, 33(3):419-422. LIU Z Y, WANG X D, KANG S. Application of multidimensional polynomial chaos on numerical simulations of stochastic cavity flow[J]. Journal of Engineering Thermophysics, 2012, 33(3):419-422 (in Chinese).
[3] FISHMAN G. Monte Carlo:Concepts, algorithms and applications[M]. New York:Springer, 1996.
[4] GHANEM R, SPANOS P. Stochastic finite elements:A spectral approach[M]. New York:Springer, 1938.
[5] XIU D, KARNIADAKIS G. The Wiener-Askey polynomial chaos for stochastic differential equations[J]. SIAM Journal of Science Computer, 2002, 24(2):619-644.
[6] NAJM H N. Uncertainty quantification and polynomial chaos techniques in computational fluid dynamics[J]. Annual Review of Fluid Mechanics, 2009, 41:35-52.
[7] WIENER N. The homogeneous chaos[J]. American Journal of Mathematics, 1938, 60:897-936.
[8] GHANEM R G, SPANOS P D. Stochastic finite elements:A spectral approach[M]. Revised edition. New York:Dover Publications, 2003.
[9] XIU D, KARNIADAKIS G E. Modeling uncertainty in flow simulations via generalized polynomial chaos[J]. Journal of Computational Physics, 2003, 187:137-167.
[10] LE MAITRE O P, KNIO O, HABIB N N, et al. A stochastic projection method for fluid flow I. Basic formulation[J]. Journal of Computational Physics, 2001, 173:481-511.
[11] LACOR C, SMIRNOV S. Uncertainty propagation in the solution of compressible Navier-Stokes equations using polynomial chaos decomposition[C]//NATO RTO AVF-147 Symposium on Computational Uncertainty in Military Vehide Design, 2007.
[12] 王晓东, 康顺. 多项式混沌法求解随机Burgers 方程[J]. 工程热物理学报, 2010, 31(6):393-398. WANG X D, KANG S. Solving sochastic Burgers equation using polynomial chaos decomposition[J]. Journal of Engineering Thermophysics, 2010, 31(6):393-398 (in Chinese).
[13] ELDRED M S. Recent advances in non-intrusive polynomial chaos and stochastic collocation methods for uncertainty analysis and design:AIAA-2009-2274[R]. Reston, VA:AIAA, 2009.
[14] HOSDER S, WALTERS R W, BALCH M. Point-collocation nonintrusive polynomial chaos method for stochastic computational fluid dynamics[J]. AIAA Journal, 2010, 48(12):2721-2730.
[15] 张伟, 王小永, 于剑, 等. 来流导致的高超声速气动热不确定性量化分析[J]. 北京航空航天大学学报, 2018, 44(5):1102-1109. ZHANG W, WANG X Y, YU J, et al. Uncertainty quantification analysis in hypersonic aerothermodynamics due to freestream[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(5):1102-1109 (in Chinese).
[16] 刘全, 王瑞利, 林忠, 等. 爆轰计算JWL状态方程参数不确定性研究[J]. 爆炸与冲击, 2013,33(6):647-654. LIU Q, WANG R L, LIN Z, et al. Uncertainty quantification for JWL EOS parameters in explosive numerical simulation[J]. Explosion and Shock Waves, 2013, 33(6):647-654 (in Chinese).
[17] LUCOR D, KARNIADAKIS G E. Adaptive generalized polynomial chaos for nonlinear random oscillators[J]. SIAM Journal on Scientific Computing, 2004, 26(2):720-735.
[18] WAN X, KARNIADAKIS G E. An adaptive multi-element generalized polynomial chaos method for stochastic differential equations[J]. Journal of Computational Physicss, 2005, 209(2):617-642.
[19] BLATMAN G, SUDRET B. An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis[J]. Probability Engineering Mechanics, 2010, 25(2):183-97.
[20] BLATMAN G, SUDRET B. Adaptive sparse polynomial chaos expansion based on least angle regression[J]. Journal of Computational Physics, 2011, 230(6):2345-2367.
[21] BLATMAN G, SUDRET B. Efficient computation of global sensitivity indices using sparse polynomial chaos expansions[J]. Reliability Engineering & System Safety, 2010, 95(11):1216-1229.
[22] NAIR P B, KEANE A J. Stochastic reduced basis methods[J]. AIAA Journal, 2002, 40(8):1653-1664.
[23] RAISEE M, KUMAR D, LACOR C. A non-intrusive model reduction approach for polynomial chaos expansion using proper orthogonal decomposition[J]. International Journal for Numerical Methods in Engineering, 2015, 103(4):293-312.
[24] TODOR R A, SCHWAB C. Convergence rates for sparse chaos approximations of elliptic problems with stochastic coefficients[J]. IMA Journal of Numerical Analysis, 2007, 27(2):232.
[25] BIERI M, SCHWAB C. Sparse high order FEM for elliptic spdes[J]. Computer Methods in Applied Mechanics and Engineering, 2009, 198(1314):1149-1170.
[26] DOOSTAN A, OWHADI H. A non-adapted sparse approximation of PDEs with stochastic inputs[J]. Journal of Computational Physics, 2011, 230(8):3015-3034.
[27] MATHELIN L, GALLIVAN K. A compressed sensing approach for partial differential equations with random input data[J]. Communications in Computational Physics, 2012, 12(4):919-954.
[28] YANG X, KARNIADAKIS G E. Reweighted 1 minimization method for stochastic elliptic differential equations[J]. Journal of Computational Physics, 2013, 248:87-108.
[29] PENG J, HAMPTON J, DOOSTAN A. A weighted 1-minimization approach for sparse polynomial chaos expansions[J]. Journal of Computational Physics, 2014, 267:92-111.
[30] SARGSYAN K, SAFTA C, NAJM H N, et al. Dimensionality reduction for complex models via bayesian compressive sensing[J]. International Journal of Uncertainty Quantify, 2014, 4(1):63-93.
[31] HAMPTON J, DOOSTAN A. Compressive sampling of polynomial chaos expansions:Convergence analysis and sampling strategies[J]. Journal of Computational Physics, 2015, 280:363-386.
[32] JAKEMAN J D, ELDRED M S, SARGSYAN K. Enhancing 1-minimization estimates of polynomial chaos expansions using basis selection[J]. Journal of Computational Physics, 2015, 289:18-34.
[33] SAEED S, MEHRDAD R, MICHEL J C, et al. Efficient uncertainty quantification of stochastic CFD problems using sparse polynomial chaos and compressed sensing[J]. Computers and Fluids, 2017, 157:296-321.
[34] CHEN J T, ZHANG Y B, ZHOU N C, et al. Numerical investigations of the high-lift configuration with Mflow solver[J]. Journal of Aircraft, 2015, 52(4):1051-1062.
[35] COOK P H, MCDONALD M A, FIRMIN M C P. Aerofoil RAE2822 pressure distributions, and boundary layer and wake measurements, experimental data base for computer program assessment:AGARD-1979-0138[R]. Paris:AGARD, 1979.
[36] SPALART P R, ALLMARAS S R. A one-equation turbulence model for aerodynamic flowst:AIAA-1992-0439[R]. Reston, VA:AIAA, 1992.
[37] 赵辉,胡星志,张健,等. 湍流模型系数的不确定度对翼型绕流模拟的影响[J].航空学报, 2019, 40 (6):122581. ZHAO H, HU X Z, ZHANG J, et al. Effects of the uncertainty in turbulence model closure coefficients on the simulation of flow over airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(6):122581(in Chinese).
[38] SOBOL I. Sensitivity estimates for nonlinear mathematical models[J]. Mathematical Modeling and Computational, Experiment,1993(1):407-414.
[39] 胡军,张树道,基于多项式混沌的全局敏感度分析[J]. 计算物理,2016, 33(1):1-13. HU J, ZHANG S D. Global sensitivity analysis based on polynomial chaos[J]. Chinese Journal of Computational Phsics, 2016, 33(1):1-13 (in Chinese).
[40] LACHAUD J, LAUB B. Ablation workshop test case[C]//4th Ablation Workshop, 2011:1-3.
[41] 刘骁, 国义军. 碳化材料三维烧蚀热响应有限元计算研究[J]. 宇航学报, 2016, 37(9):1150-1156. LIU X, GUO Y J. Numerical simulation research on three-dimensional ablative thermal response of charring ablators[J]. Journal of Astronautics, 2016, 37(9):1150-1156 (in Chinese).
文章导航

/