材料工程与机械制造

新型浮动式收敛袋型密封自适应同心性能数值与实验研究

  • 孙丹 ,
  • 王平 ,
  • 赵欢 ,
  • 张国臣 ,
  • 肖忠会 ,
  • 孟继纲
展开
  • 1. 沈阳航空航天大学 航空发动机学院 辽宁省航空推进系统先进测试技术重点实验室, 沈阳 110136;
    2. 沈阳鼓风机集团股份有限公司 辽宁重大装备制造协同创新中心, 沈阳 110142

收稿日期: 2019-07-05

  修回日期: 2019-11-18

  网络出版日期: 2019-11-07

基金资助

国家自然科学基金(51675351);中国博士后科学基金(2018M633572);辽宁省高等学校创新人才支持计划项目(LR2016033)

Numerical and experimental study on adaptive concentric performance of a new type of floating convergent pocket seal

  • SUN Dan ,
  • WANG Ping ,
  • ZHAO Huan ,
  • ZHANG Guochen ,
  • XIAO Zhonghui ,
  • MENG Jigang
Expand
  • 1. Key Laboratory of Advanced Measurement and Test Technology for Aviation Propulsion System, Liaoning Province, School of Aero-engine, Shenyang Aerospace University, Shenyang 110136, China;
    2. Collaborative Innovation Center of Machine Manufacturing in Liaoning, Shenyang Blower Works Group Company Limited, Shenyang 110142, China

Received date: 2019-07-05

  Revised date: 2019-11-18

  Online published: 2019-11-07

Supported by

National Natural Science Foundation of China(51675351); China Postdoctoral Science Foundation(2018M633572);College Innovation Talent Support Program of Liaoning Province(LR2016033)

摘要

提出了新型浮动式收敛袋型密封结构,建立了新型收敛袋型密封数值求解模型,研究新型收敛袋型密封周向压力分布规律,分析进出口压比和偏心率对新型收敛袋型密封泄漏量及浮动同心力的影响。设计搭建了浮动式自同心密封实验台,在数值计算结果与实验测试结果相互验证的基础上,研究进出口压比和偏心率对新型浮动式收敛袋型密封泄漏量及自适应同心性能的影响。研究结果表明:在本文研究工况下,新型收敛袋型密封所产生的浮动同心力是传统迷宫密封的8.9~10.9倍。在不同进出口压比和偏心率下,传统浮动式迷宫密封均始终处于初始偏心位置,自适应同心性能较差。新型浮动式收敛袋型密封均向转子轴心方向移动,且随着进出口压比和偏心率的增大,浮动响应时间缩短,自适应同心性能增强。新型浮动式收敛袋型密封具有良好的浮动响应特性和自适应同心性能。

本文引用格式

孙丹 , 王平 , 赵欢 , 张国臣 , 肖忠会 , 孟继纲 . 新型浮动式收敛袋型密封自适应同心性能数值与实验研究[J]. 航空学报, 2020 , 41(3) : 423270 -423270 . DOI: 10.7527/S1000-6893.2019.23270

Abstract

A new type of floating convergent pocket seal structure is proposed, a numerical solution model of new convergent pocket seal is established, the distribution law of circumferential pressure of new convergent pocket seal is studied, and the influence of import/export pressure ratio and eccentricity on the leakage and floating concentric force of new convergent pocket seal are analyzed. The experimental platform of floating self-concentric seal is designed and constructed. On the basis of the mutual verification of the numerical calculation results and the experimental test results, the influence of import/export pressure ratio and eccentricity on the leakage and adaptive concentric performance of the new floating convergent pocket seal was studied. The results show that, under the working conditions, the floating concentric force of the new convergent pocket seal is 8.9-10.9 times that of the traditional labyrinth seal. Under different import/export pressure ratios and eccentricities, the traditional floating labyrinth seal is always in the initial eccentric position and the adaptive concentric performance is poor. The new floating convergent pocket seal moves in the rotor axis direction, with the increase of import/export pressure ratio and eccentricity, the floating response time is shortened and the adaptive concentric performance is enhanced. The new type of floating convergent pocket seal has good floating response characteristics and adaptive concentric performance.

参考文献

[1] 曹树谦, 陈予恕. 现代密封转子动力学研究综述[J]. 工程力学, 2009,26(Sup.II):68-79. CAO S Q, CHEN Y S. A review of modern rotor/seal dynamics[J]. Engineering Mechanics, 2009,26(Sup.II):68-79. (in Chinese).
[2] 高庆, 李军. 涡轮蜂窝面径向轮缘密封封严性能的数值研究[J]. 推进技术, 2016, 37(5):938-944. GAO Q, LI J. Numerical investigations on sealing performance of turbine honeycomb radial rim seal[J]. Propulsion Technology, 2016, 37(5):938-944 (in Chinese).
[3] LAKSHMINARAYANA B. Fluid dynamic and heat transfer of turbomachinery[M]. New York:John Wiley & Sons Inc, 1996:339-347.
[4] 孙丹, 王猛飞, 艾延廷, 等. 蜂窝密封泄漏特性理论与实验[J]. 航空学报, 2017, 38(4):277-286. SUN D, WANG M F, AI Y T, et al. Theoretical and experiment study of leakage characteristics of honeycomb seal[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(4):277-286 (in Chinese).
[5] LI Z G. Numerical investigation on discharge behavior and predication formula establishment of leakage flow rate of honeycomb seal[J]. Journal of Mechanical Engineering, 2011, 47(2):134-142.
[6] ARORA G K, PROCTOR M P, STEINETZ B M, et al. Pressure balanced, low hysteresis finger seal test results[C]//The 35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, VA:AIAA, 1999.
[7] 孙丹, 李胜远, 肖忠会, 等. 锥形间隙孔型阻尼密封动力特性分析及抑振机理[J]. 航空动力学报, 2018, 33(7):1544-1552. SUN D, LI S Y, XIAO Z H, et al. Rotordynamic characteristics analysis and suppression vibration mechanism of taper-clearance hole-pattern damper seal[J]. Journal of Aerospace Power, 2018, 33(7):1544-1552 (in Chinese).
[8] VANCE J M, LI J. Test results of a new damper seal for vibration reduction in turbomachinery[J]. Journal of Engineering for Gas Turbines & Power, 1996, 118(4):V005T14A001.
[9] 李军, 李志刚. 袋型阻尼密封泄漏流动和转子动力特性的研究进展[J]. 力学进展, 2011, 41(5):519-536. LI J, LI Z G. Review of the leakage flow and rotordynamic characteristics of pocket damper seals[J]. Advance in Mechanics, 2011, 41(5):519-536 (in Chinese).
[10] 孙丹, 王双, 艾延廷, 等. 反旋流对密封静力与动力特性影响的理论与试验研究[J]. 机械工程学报, 2016, 52(3):101-109. SUN D, WANG S, AI Y T, et al. Theoretical and experimental research on the performance of anti-swirl flow for the static and dynamic characteristics of seals[J]. Journal of Mechanical Engineering, 2016, 52(3):101-109 (in Chinese).
[11] 吕江, 何立东, 吕成龙, 等. 转子密封系统反旋流抑振的数值分析及实验研究[J]. 润滑与密封, 2015, 40(10):30-35. LV J, HE L D, LV C L, et al. Numerical analysis and experimental study of rotor-seal system with anti-swirl arrangement[J]. Lubrication Engineering, 2015, 40(10):30-35 (in Chinese).
[12] 孙丹, 王双, 艾延廷, 等. 阻旋栅对密封静力与动力特性影响的数值分析与实验研究[J]. 航空学报, 2015, 36(9):3002-3011. SUN D, WANG S, AI Y T, et al. Numerical and experimental research on performance of swirl brakes for the static and dynamic characteristics of seals[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(9):3002-3011 (in Chinese).
[13] SUN D, WANG X D. A novel negative dislocated seal and influential parameter analyses of static/rotordynamic characteristics[J]. Journal of Mechanical Science and Technology, 2018, 32(9):4125-4134.
[14] BODGER W K. Discussion:"Protecting turbomachinery from self-excited rotor whirl"[J]. Journal of Engineering for Gas Turbines, 1965, 87(4):333-343.
[15] VANCE J M, LAUDADIO F J. Experimental measurements of Alford force in axial flow turbo-machinery:84-GT-140[R]. ASME Paper, 1984.
[16] 曹浩, 杨建刚, 郭瑞, 等. 密封动力特性系数试验识别方法及影响因素分析[J]. 机械工程学报, 2011, 47(9):85-89. CAO H, YANG J G, GUO R, et al. Experimental identification method and influence factor analysis of seal dynamic characteristic[J]. Journal of Mechanical Engineering, 2011, 47(9):85-89 (in Chinese).
[17] 马文生, 陈照波, 焦映厚, 等. 偏心率和转速对迷宫密封力和动力学参数影响分析研究[J]. 振动工程学报, 2012, 25(3):282-288. MA W S, CHEN Z B, JIAO Y H, et al. An analytical study of the effect of different eccentricity and whirling speed on labyrinth seal forces and dynamics parameters[J]. Journal of Vibration Engineering, 2012, 25(3):282-288 (in Chinese).
[18] 孙丹, 卢江, 艾延廷, 等. 偏心密封动力特性分析与新型自同心密封研究[J]. 推进技术, 2018, 39(9):2075-2084. SUN D, LU J, AI Y T, et al. Dynamical characteristics of eccentric seal and novel floating self-adapt concentric Seal concepts[J]. Journal of Propulsion Technology, 2018, 39(9):2075-2084 (in Chinese).
[19] 张万福, 杨建刚, 曹浩, 等. 偏心密封内切向气流力及其对稳定性影响的理论与试验研究[J]. 机械工程学报, 2011, 47(17):92-98. ZHANG W F, YANG J G, CAO H, et al. Theoretical and experimental research of tangential fluid-induced force and its influence on stability in eccentric seal[J]. Journal of Mechanical Engineering, 2011, 47(17):92-98 (in Chinese).
[20] ERTAS B H, DELGADO A, VANNINI G. Rotordynamic Force coefficients for three types of annular gas seals with inlet preswirl and high differential pressure ratio[J]. Journal of Engineering for Gas Turbines and Power, 2012, 134(4):42-50.
[21] 孙丹, 李胜远, 艾延廷, 等. 袋型阻尼密封动力特性分析及对转子稳定性的影响[J]. 中国电机工程学报, 2018, 38(12):3621-3628. SUN D, LI S Y, AI Y T, et al. Analysis of the rotordynamic characteristics of pocket damper seals and impact on rotor stability[J]. Proceedings of the CSEE, 2018, 38(12):3621-3628 (in Chinese).
[22] CAMATTI M, VANNINI G, FULTON J W, et al. Instability of a high pressure compressor equipped with honeycomb seals[C]//Proceedings of the 32th Turbomachinery Symposium, 2003:8-11.
[23] CHILDS D W, ARTHUR S P. Static destabilizing behavior for gas annular seals at high eccentricity ratios[C]//ASME Turbo Expo 2013:Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2013:V07AT29A003.
[24] 李志刚, 陈尧兴, 李军. 高偏心率下旋转密封泄漏特性和静态动力特性研究[J]. 西安交通大学学报, 2017, 13(7):1-10. LI Z G, CHEN Y X, LI J. Investigation on the leakage and static dynamic characteristics of rotating seals at high eccentricity ratios[J]. Journal of Xi'an Jiaotong University, 2017, 13(7):1-10 (in Chinese).
文章导航

/