材料工程与机械制造

GH4169铸锭中夹杂物的类型及分布规律

  • 孔豪豪 ,
  • 杨树峰 ,
  • 曲敬龙 ,
  • 杜金辉 ,
  • 黄燕成
展开
  • 1. 北京科技大学 冶金与生态工程学院, 北京 100083;
    2. 高端金属特种熔炼与制备北京市重点实验室, 北京 100083;
    3. 钢铁研究总院 高温材料研究所, 北京 100081;
    4. 北京钢研高纳科技股份有限公司, 北京 100081;
    5. 攀钢集团 江油长城特殊钢有限公司, 江油 621701

收稿日期: 2019-07-23

  修回日期: 2019-11-04

  网络出版日期: 2019-10-31

基金资助

国家自然科学基金(51874103,51734003);四川省专项资金支持军民融合项目(部级项目)

Type and distribution of inclusion in GH4169 nickel based superalloy

  • KONG Haohao ,
  • YANG Shufeng ,
  • QU Jinglong ,
  • DU Jinhui ,
  • HUANG Yancheng
Expand
  • 1. School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China;
    2. Beijing Key Laboratory of Special Melting and Preparation of High-End Metal Materials, Beijing 100083, China;
    3. High Temperature Materials Research Institute, Beijing Central Iron and Steel Research Institute, Beijing 100081, China;
    4. Beijing CISRI-GAONA Materials&Technology Co. LTD, Beijing 100081, China;
    5. Pangang Group Jiangyou Changcheng Special Steel Co., LTD, Jiangyou 621701, China

Received date: 2019-07-23

  Revised date: 2019-11-04

  Online published: 2019-10-31

Supported by

National Natural Science Foundation of China (51874103, 51734003); Civil-Military Integration Project Supported by Special Funds from Sichuan Province(Ministerial Project)

摘要

高温合金中夹杂物是影响合金冶金质量和使用性能的主要因素。采用三联冶炼工艺对GH4169合金进行冶炼,并利用配有能谱仪的扫描电镜系统研究了VAR铸锭边缘及顶端区域夹杂物类型与分布的变化情况,为夹杂物的进一步控制提供参考。结果表明,在横向方向上,随试样所在位置远离铸锭边缘,夹杂物的平均尺寸由3.15 μm递减至2.58 μm,其数量密度由2 291 N/mm2(N代表夹杂物个数)降低至1 429 N/mm2;在纵向方向上,随试样所在位置远离铸锭顶端,夹杂物的平均尺寸由3.47 μm递减至2.84 μm,其数量密度由1 453 N/mm2降低至904 N/mm2,而合金中均包含5种类型的夹杂物,其类型与试样所在位置无关。最终,本实验初步判定φ508 mm的GH4169铸锭较为合适的车削量与切头量分别为30~40 mm和110~120 mm。

本文引用格式

孔豪豪 , 杨树峰 , 曲敬龙 , 杜金辉 , 黄燕成 . GH4169铸锭中夹杂物的类型及分布规律[J]. 航空学报, 2020 , 41(4) : 423306 -423306 . DOI: 10.7527/S1000-6893.2019.23306

Abstract

Inclusion is the main factor affecting the metallurgical quality and mechanical property of the Ni-based superalloys. In the present research, triple-melting techniques were used to refine the microstructure of GH4169 superalloy. Scanning Electron Microscopy (SEM) with an EDS were used to analyze the types and the distribution of inclusions in the edge and top region of the VAR ingot. The results showed that the average size and the amount of inclusions decreased from 3.15 μm to 2.58 μm and 2 291 N/mm2 to 1 429 N/mm2, as the sample was located away from the edge of the ingot. And the average size and the amount of inclusions decreased from 3.47 μm to 2.84 μm and 1 453 N/mm2 to 904 N/mm2, as the sampling locations moved away from the top of the ingot. Among the five main types of inclusions in the ingot, the rest of the types were independent of the sampling location. Finally, in this research, the amount of turning and cutting were tentatively determined to be 30-40 mm and 110-120 mm for the φ508 mm GH4169 VAR ingot.

参考文献

[1] KIRKA M M, UNOCIC K A, RAGHAVAN N, et al. Microstructure development in electron beam-melted Inconel 718 and associated tensile properties[J]. JOM, 2016, 68(3):1012-1020.
[2] IVANOFF T A, WATT T J, TALEFF E M. Characterization of solidification microstructures in vacuum arc remelted nickel alloy 718[J]. Metallurgical and Materials Transactions B, 2019, 50(2):700-715.
[3] CHEN Z, PENG R L, MOVERARE J, et al. Surface integrity and structural stability of broached Inconel 718 at high temperatures[J]. Metallurgical and Materials Transactions A, 2016, 47(7):3664-3676.
[4] CRUZADO A, LUCARINI S, LLORCA J, et al. Crystal plasticity simulation of the effect of grain size on the fatigue behavior of polycrystalline Inconel 718[J]. International Journal of Fatigue, 2018, 113:236-245.
[5] 杜金辉,吕旭东,邓群,等. GH4169合金研制进展[J].中国材料进展, 2012, 31(12):12-20. DU J H, LV X D, DENG Q, et al. Progress in GH4169 alloy development[J]. Rare Metals Letters, 2012, 31(12):12-20(in Chinese).
[6] CHEN Z Y, YANG S F, LI J S, et al. Effects of different hot working techniques on inclusions in GH4738 superalloy produced by VIM and VAR[J]. Materials, 2018, 11(6):1024.
[7] SCHMIEDT A B, DICKERT H H, BLECK W, et al. Evaluation of maximum non-metallic inclusion sizes in engineering steels by fitting a generalized extreme value distribution based on vectors of largest observations[J]. Acta Materialia, 2015, 95:1-9.
[8] DEGAWA T, OTOTANI T. Refining of high purity Ni-base superalloy using calcia refractory[J]. Tetsu-to-Hagane, 1987, 73(14):1691-1697.
[9] SHEVCHENKO D M, WARD R M. Liquid metal pool behavior during the vacuum arc remelting of inconel 718[J]. Metallurgical and Materials Transactions B, 2009, 40(3):263-270.
[10] CHEN Z Y, YANG S F, QU J L, et al. Effects of different melting technologies on the purity of superalloy GH4738[J]. Materials, 2018, 11(10):1838.
[11] VERMA N, PISTORIUS P C, FRUEHAN R J, et al. Calcium modification of spinel inclusions in Aluminum-Killed steel:reaction steps[J]. Metallurgical and Materials Transactions B, 2012, 43(4):830-840.
[12] DENG Z Y, ZHU M Y. Deoxidation Mechanism of Al-Killed steel during industrial refining process[J]. ISIJ International, 2014, 54(7):1498-1506.
[13] DESCOTES V, BELLOT J P, PERRIN-GUÉRIN V, et al. Titanium nitride (TiN) precipitation in a maraging steel during the vacuum arc remelting (VAR) process-Inclusions characterization and modeling[J]. IOP Conference Series:Materials Science and Engineering, 2016, 143(1):012013.
[14] JIANG M, WANG X H, CHEN B, et al. Laboratory study on evolution mechanisms of non-metallic inclusions in high srength alloyed steel refined by high basicity slag[J]. ISIJ International, 2010, 50(1):95-104.
[15] ZAGREBELNYY D, KRANE M J M. Segregation development in multiple melt vacuum arc remelting[J]. Metallurgical and Materials Transactions B, 2009, 40(3):281-288.
[16] PERICLEOUS K, DJAMBAZOV G, WARD M, et al. A multiscale 3D model of the vacuum arc remelting process[J]. Metallurgical and Materials Transactions A, 2013, 44(12):5365-5376.
[17] BRICKNELL R H, MULFORD R A, WOODFORD D A. The role of sulfur in the air embrittlement of nickel and its alloys[J]. Metallurgical Transactions A, 1982, 13(7):1223-1232.
[18] LI B, GLEESON B. Effects of silicon on the oxidation behavior of Ni-base chromia-forming alloys[J]. Oxidation of Metals, 2006, 65(1-2):101-122.
[19] 柴国明,陈希春,郭汉杰. FGH96高温合金中一次碳化物形成规律[J].中国有色金属学报, 2012, 22(8):2205-2213. CHAI G M, CHEN X C, GUO H J. Formation mechanism of primary carbides in FGH96 superalloy[J]. The Chinese Journal of Nonferrous Metals, 2012, 22(8):2205-2213(in Chinese).
[20] LI M G, MATSUURA H, TSUKIHASHI F. Investigation on the formation mechanism of Ti-bearing non-metallic inclusions in Fe-Al-Ti-ON alloy by inductive separation method[J]. Materials Characterization, 2018, 136:358-366.
[21] JANG J M, SEO S H, HAN J S, et al. Reassessment of TiN (s)=Ti+N equilibration in liquid iron[J]. ISIJ International, 2015, 55(11):2318-2324.
[22] SHATYNSKI S R. The thermochemistry of transition metal carbides[J]. Oxidation of Metals, 1979, 13(2):105-118.
[23] 魏文庆,刘炳强,姜军生,等.热处理对Nb-35Ti-4C合金微观组织和力学行为的影响[J].稀有金属材料与工程, 2017, 46(3):777-782. WEI W Q, LIU B Q, JIANG J S, et al. Effect of heat treatment on microstructure and mechanical behavior of Nb-35Ti-4C alloy[J]. Rare Metal Materials and Engineering, 2017, 46(3):777-782(in Chinese).
[24] 耿鑫,孙诗誉,张志超,等.真空感应炉坩埚材质对Cr12钢纯净度的影响[J].材料与冶金学报, 2015, 14(3):175-181. GENG X, SUN S Y, ZHANG Z C, et al. Effect of crucible materials of vacuum induction furnace on cleanliness of steel Cr12[J]. Journal of Materials and Metallurgy, 2015, 14(3):175-181(in Chinese).
[25] MITCHELL A. Solidification in remelting processes[J]. Materials Science and Engineering:A (Structural Materials:Properties, Microstructure and Processing), 2005, 413-414:10-18.
[26] CHAPELLE P, BELLOT J P, DUVAL H, et al. Modelling of plasma generation and expansion in a vacuum arc:Application to the vacuum arc remelting process[J]. Journal of Physics D:Applied Physics, 2001, 35:137-150.
[27] QU J L, YANG S F, CHEN Z Y, et al. Effect of turning amount on metallurgical qualities and mechanical properties of GH4169 Superalloy[J]. Materials, 2019, 12(11):1852.
文章导航

/