流体力学与飞行力学

均匀各向同性大气湍流对声爆传播特性的影响

  • 冷岩 ,
  • 钱战森 ,
  • 杨龙
展开
  • 1. 航空工业空气动力研究院, 沈阳 110034;
    2. 高速高雷诺数航空科技重点实验室, 沈阳 110034

收稿日期: 2019-07-16

  修回日期: 2019-09-05

  网络出版日期: 2019-10-31

基金资助

国家自然科学基金(11672280)

Homogeneous isotropic atmospheric turbulence effects on sonic boom propagation

  • LENG Yan ,
  • QIAN Zhansen ,
  • YANG Long
Expand
  • 1. AVIC Aerodynamics Research Institute, Shenyang 110034, China;
    2. Aviation Key Laboratory of Science and Technology on High Speed and High Reynolds Number Aerodynamic Force Research, Shenyang 110034, China

Received date: 2019-07-16

  Revised date: 2019-09-05

  Online published: 2019-10-31

Supported by

National Natural Science Foundation of China (11672280)

摘要

基于离散Fourier模态有限和生成的随机大气湍流场,采用修正波形参数方法,开展了均匀各向同性大气湍流对典型超声速客机声爆传播特性的影响分析。计算采用的超声速客机模型为自行生成的简化超声速公务机模型。首先,应用航空工业空气动力研究院自主研制的CFD软件ARI_Overset在三维空间求解Navier-Stokes方程,得到作为声爆远场传播初始值的近场空间压力分布;其次,基于Von Karman能量谱,采用离散Fourier模态有限和形式生成随机均匀各向同性大气湍流场;最后,采用修正波形参数方法模拟了声爆信号在随机速度湍流场中的传播过程。数值结果表明:各向同性大气湍流对于地面声爆特征有重要影响。与无湍流状态相比,均匀各向同性大气湍流使得地面声爆特征增强的概率约为55%,使得地面声爆特征减弱的概率约为45%,故总体而言大气湍流效应更倾向于增强地面声爆特征;均匀各向同性大气湍流对于声爆传播路径影响相对较小,但是这一变化仍会导致地面信号接收点的不确定性。

本文引用格式

冷岩 , 钱战森 , 杨龙 . 均匀各向同性大气湍流对声爆传播特性的影响[J]. 航空学报, 2020 , 41(2) : 123290 -123290 . DOI: 10.7527/S1000-6893.2019.23290

Abstract

Based on the finite sum of discrete Fourier modes and the modified waveform parameter method, the effect of homogeneous isotropic atmospheric turbulence on sonic boom propagation is studied. The model used during CFD simulation is a self-generated simplified supersonic business aircraft. First, the flow field is obtained by solving the three dimensional Navier-Stokes equations using ARI_Overset in-house CFD solver developed by AVIC Aerodynamics Research Institute, and the near-field pressure is then extracted from the CFD results. Second, based on the Von Karman energy spectrum, a random velocity field of homogeneous isotropic atmospheric turbulence is calculated from the finite sum of discrete Fourier modes. Finally, the sonic boom signature on the ground is calculated by the modified waveform parameter method. The results indicated that the atmospheric turbulence has a marked influence on sonic boom overpressure during its propagation to the ground. The sonic boom increased in 55% of the cases and decreased in 45% of the cases. Compared to the no-turbulence condition, the turbulence seems to favor an increase rather than a decrease in boom overpressure. Although the turbulence has a small effect on the propagation path from the flight altitude to the ground, it may result in a variability of the point where the sonic boom reaches on the ground.

参考文献

[1] HENNE P A. Case for small supersonic civil aircraft[J]. Journal of Aircraft, 2005, 42(3):765-774.
[2] HILTON D A, HUCKEL V, STEINER R, et al. Sonic-boom exposures during FAA Community-Response studies over a 6-month period in the Oklahoma city area:NASA TN D-2539[R]. Washington, D.C.:NASA, 1964.
[3] TAKENO J, MISAKA T, SHIMOYAMA K, et al. Analysis of sonic boom propagation based on the KZK equation:AIAA-2015-0745[R]. Reston, VA:AIAA, 2015.
[4] FUJINOK, KIKUCHI R, SHIMOYAMA K, et al. Effects of uncertainties in atmospheric turbulence and weather predictions on sonic boom:AIAA-2017-0280[R]. Reston, VA:AIAA, 2017.
[5] PIACSEK A A. Atmospheric turbulence conditions leading to focused and folded sonic boom wave fronts[J]. The Journal of the Acoustical Society of America, 2002, 111(1):520-529.
[6] LOCEY L L. Sonic boom postprocessing functions to simulate atmospheric turbulence effects[D]. Commonwealth, PA:The Pennsylvania State University, 2008.
[7] LUQUET D. 3D simulation of acoustical shock waves propagation through a turbulent atmosphere:Application to sonic boom[D]. Paris:Sorbonne University, 2016.
[8] YAMASHITA H, OBAYASHI S. Sonic boom variability due to homogeneous atmospheric turbulence[J]. Journal of Aircraft, 2009, 46(6):1886-1893.
[9] 乔建领, 韩忠华, 丁玉临, 等. 基于广义Burgers方程的超声速客机远场声爆高精度预测方法[J]. 空气动力学学报, 2019, 37(4):663-674. QIAN J L, HAN Z H, DING Y L, et al. Sonic boom prediction method for supersonic transports based on augmented Burgers equation[J]. Acta Aerodynamica Sinica, 2019, 37(4):663-674(in Chinese).
[10] 韩忠华, 乔建领, 丁玉临, 等. 新一代环保型超声速客机关键技术与研究进展[J]. 空气动力学学报, 2019, 37(4):620-635. HAN Z H, QIAN J L, DING Y L, et al. Key technologies for next generation environmentally-friendly supersonic transport aircraft:A review of recent progress[J]. Acta Aerodynamica Sinica, 2019, 37(4):620-635(in Chinese).
[11] 王刚, 马博平, 雷知锦, 等. 典型标模音爆的数值预测与分析[J].航空学报, 2018,39(1):164-176. WANG G, MA B P, LEI Z J, et al. Simulation and analysis for sonic boom on several benchmark cases[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1):164-176(in Chinese).
[12] 张绎典, 黄江涛, 高正红. 基于增广Burgers方程的音爆远场计算及应用[J]. 航空学报, 2018, 39(7):122039. ZHANG Y D, HUANG J T, GAO Z H. Far field simulation and applications of sonic boom based on augmented Burgers equation[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(7):122039(in Chinese).
[13] 钱战森, 刘中臣, 冷岩, 等. OS-X0试验飞行器声爆特性测量与数值模拟分析[J]. 空气动力学学报, 2019, 37(4):675-682. QIAN Z S, LIU Z C, LENG Y, et al. Flight measurement and numerical simulation of sonic boom signature of OS-X0 experimental aircraft[J]. Acta Aerodynamica Sinica, 2019, 37(4):675-682(in Chinese).
[14] 冷岩, 钱战森, 刘中臣. 超声速条件下旋成体声爆典型影响因素分析[J]. 空气动力学学报, 2019, 37(4):655-662, 689. LENG Y, QIAN Z S, LIU Z C. Analysis on typical parameters of bodies of revolution affecting the sonic boom[J]. Acta Aerodynamica Sinica, 2019, 37(4):655-662, 689(in Chinese).
[15] 刘中臣, 钱战森, 冷岩. 声爆近场空间压力风洞试验技术研究进展[J]. 空气动力学学报, 2019, 37(4):636-645. LIU Z C, QIAN Z S, LENG Y. Review of recent progress of wind tunnel measurement techniques for off-body sonic boom pressure[J]. Acta Aerodynamica Sinica, 2019, 37(4):636-645(in Chinese).
[16] 徐悦, 宋万强. 典型低音爆构型的音爆计算研究[J]. 航空科学与技术, 2016, 27(7):12-16. XU Y, SONG W Q. Near field sonic boom calculation on typical LSB configurations[J]. Aeronautical Science & Technology, 2016, 27(7):12-16(in Chinese).
[17] 兰世隆. 超声速民机声爆理论、预测和最小化方法概述[J]. 空气动力学学报, 2019, 37(4):646-654, 645. LAN S L. Overview of sonic boom theory, prediction and minimization methods for supersonic civil aircraft[J]. Acta Aerodynamica Sinica, 2019, 37(4):646-654, 645(in Chinese).
[18] LIU Y, WANG L, QIAN Z S. Numerical investigation on the assistant restarting method of variable geometry for high Mach number inlet[J]. Aerospace Science and Technology, 2018, 79:647-657.
[19] LENG Y, QIAN Z S. Sonic boom signature analysis for a type of hypersonic long-range civil vehicle:AIAA-2017-2244[R]. Reston, VA:AIAA, 2017.
[20] XIANG X H, LIU Y, QIAN Z S. Investigation of a wide range adaptable hypersonic dual-waverider integrative design method based on two different types of 3D inward-turning inlets:AIAA-2017-2110[R]. Reston,VA:AIAA, 2017.
[21] LI H M, QIAN Z S. Implementation of three different transition methods and comparative analysis of the results computed by OVERSET software:AIAA-2016-3491[R]. Reston, VA:AIAA, 2016.
[22] LENG Y, QIAN Z S. A CFD based sonic boom prediction method and investigation on the parameters affecting the sonic boom signature[C]//Proceeding of 2014 Asia-Pacific International Symposium on Aerospace Technology, 2014.
[23] BECHARA W, BAILLY C, LAFON P, et al. Stochastic approach to noise modeling for free turbulent flows[J]. AIAA Journal, 1994, 32(3):455-463.
[24] RISSO F, CORJON A, STOESSEL A. Direct numerical simulations of wake vortices in intense homogeneous turbulence[J]. AIAA Journal, 1997, 35(6):1030-1040.
[25] THOMAS C L. Extrapolation of sonic boom pressure signatures by the waveform parameter method:NASA TN D-6832[R]. Washington, D.C.:NASA, 1972.
[26] THOMAS C L. Extrapolation of wind-tunnel sonic boom signatures without use of a Whitham F-Function:NASA SP-255[R]. Washington, D.C.:NASA, 1970.
[27] BLANCl B P, LIPKENS B, DALLOIS L, et al. Propagation of finite amplitude sound through turbulence:Modeling with geometrical acoustics and the parabolic approximation[J]. Journal of the Acoustical Society of America, 2002, 111(1-2):487-498.
[28] CHEMYSHEV S L, KISELEV A P, VOROTNIKOV P P. Sonic boom minimization and atmospheric effects:AIAA-2008-0058[R]. Reston, VA:AIAA, 2008.
[29] HINZE J. Turbulence[M]. 2nd ed. New York:McGraw-Hill, 1975:175-320.
[30] KARWEIT M. Simulation of the propagation of an acoustic wave through a turbulent velocity field:A study of phase variance[J]. The Journal of the Acoustical Society of America, 1991, 89(1):52-62.
[31] WALID B, CHRISTOPHE B, PHILIPPE L. Stochastic approach to noise modeling for free turbulent flows[J]. AIAA Journal, 1994, 32(3):455-463.
[32] 盛裴轩. 大气物理学[M]. 北京:北京大学出版社, 2003. SHENG P X. Atmospheric physics[M]. Beijing:Peking University Press, 2003(in Chinese).
[33] HUBBARD H H, MAGLIERI D J, HUCKEL V, et al. Ground measurements of sonic boom pressures for the altitude range of 10,000 to 75,000 feet:NASA TR R-198[R]. Washington, D.C.:NASA, 1964.
[34] GARRICK I E, MAGLIERI D J. A summary of results on sonic boom pressure signature variations associated with atmospheric conditions:NASA TN D-4588[R]. Washington, D.C.:NASA, 1968.
[35] PLOTKIN K J, HAERING E A, MUAARY J E, et al. Ground data collection of shaped sonic boom experiment aircraft pressure signatures:AIAA-2005-0010[R]. Reston, VA:AIAA, 2005.
文章导航

/