High temperature gas effect can have a strong impact on the flow characteristics of plasma, thus influencing the efficiency of magnetohydrodynamic flow control. Based on the hypothesis of low magnetic Reynolds number, a numerical simulation of magnetohydrodynamic flow control of perfect gas, equilibrium gas, chemical non-equilibrium gas, and thermal-chemical non-equilibrium gas is conducted by solving coupled electric field Poisson equation and three dimensional Navier-Stokes equation with electromagnetic source term. Based on this method, this paper analyzes the influence of different gas models on magnetohydrodynamic flow control, discussing the rule of the influence of high temperature gas chemical non-equilibrium effect, thermal-chemical non-equilibrium effect, and Joule heat vibrational energy ratio on magnetohydrodynamic flow control. Results show that gas model has a strong influence on magnetohydrodynamic flow control. By using chemical non-equilibrium gas model, the increase of aerodynamic drag coefficient caused by magnetic field is smaller than that by using perfect gas model but is larger than that by using equilibrium gas model. The magnetic thermal protection effect by using equilibrium gas model and perfect gas model is different from that by using the non-equilibrium gas model. The influence of thermal-chemical non-equilibrium effect on magneto hydrodynamic flow control is in close relation to the Joule heat vibrational energy ratio. As the Joule heat vibrational energy ratio increases, the influence on aerodynamic drag coefficient caused by magnetic field falls significantly from 67% to 12%. The high temperature real gas effect will significantly reduce the influence on aerodynamic drag coefficient caused by magnetic field and significantly enhance the efficiency of magnetic thermal protection. In order to precisely simulate magnetohydrodynamic flow, the thermal-chemical non-equilibrium effect must be taken into account, and the most accurate Joule heat vibrational energy ratio should be chosen.
[1] 田正雨. 高超声速流动的磁流体力学控制数值模拟研究[D]. 长沙:国防科技大学, 2008. TIAN Z Y. Numerical investigation for hypersonic flow control by magnetohydrodynamics methods[D]. Changsha:National University of Defense and Technology, 2008(in Chinese).
[2] 潘勇. 高超声速流场磁场干扰效应数值模拟方法研究[D]. 南京:南京航空航天大学, 2007. PAN Y. Numerical methods for hypersonic flowfield with magnetic interference[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2007(in Chinese).
[3] 董维中. 热化学非平衡效应对高超声速流动影响的数值计算与分析[D]. 北京:北京航空航天大学, 1996. DONG W Z. Numerical simulation and analysis of thermo-chemical non-equilibrium effects at hypersonic flows[D]. Beijing:Beihang University, 1996(in Chinese).
[4] 乐嘉陵. 再入物理[M]. 北京:国防工业出版社, 2005:9-21. LE J L. Reentry physics[M]. Beijing:National Defence Industry Press, 2005:9-21(in Chinese).
[5] OTSU H, MATSUDA A, ABE T, et al. Numerical validation of the magnetic flow control for reentry vehicles:AIAA-2006-3236[R]. Reston, VA:AIAA, 2006.
[6] BOETTCHER C. A numerical study of magneto-hydrody-namic flows with respect to the hall effect:AIAA-2009-7254[R]. Reston, VA:AIAA, 2009.
[7] LEE J, HUERTA M A, ZHA G. Low Rem 3D MHD hypersonic equilibrium flow using high order WENO Schemes:AIAA-2010-0229[R]. Reston, VA:AIAA, 2010.
[8] BISEK N J, BOYD I D. Numerical study of magnetoaerodynamic flow around a hemisphere[J]. Journal of Spacecraft and Rockets, 2010, 47(5):816-827.
[9] BISEK N J, POGGIE J. Exploration of MHD flow control for a hypersonic blunt elliptic cone with an impregnated ablator:AIAA-2011-0897[R]. Reston, VA:AIAA, 2011.
[10] NAGATA Y, OTSU H, YAMADA K, et al. Influence of hall effect on electrodynamic flow control for weakly ionized flow:AIAA-2012-2734[R]. Reston, VA:AIAA, 2012.
[11] MASUDA K, SHIMOSAWA Y, FUJINO T. Three-dimensional numerical simulation of magnetohydro-dynamic flow control in reentry flight:AIAA-2015-3366[R]. Reston, VA:AIAA, 2015.
[12] FUJINO T, TAKAHASHI T. Numerical simulation of mars entry flight using magnetohydrodynamic parachute effect:AIAA-2016-3227[R]. Reston, VA:AIAA, 2016.
[13] BALSARA D S, MONTECINOS G I, TORO E F. Exploring various flux vector splittings for the magnetohydrodynamic system[J]. Journal of Computational Physics, 2016, 311:1-21.
[14] 黄富来,黄护林. 磁场对高超声速弱电离气体流动的影响[J]. 航空学报, 2009, 30(10):1834-1839. HUANG F L,HUANG H L. Effect of magnetic field on hypersonic weakly ionized gas flow[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(10):1834-1839(in Chinese).
[15] 黄浩, 黄护林,张喜东, 等. 基于电子束电离的高超声速磁流体发电机[J]. 推进技术, 2013, 34(5):706-712. HUANG H, HUANG H L, ZHANG X D, et al. Hypersonic magnetohydrodynamic generator based on electron-beam-generated ionization[J]. Journal of Propulsion Technology, 2013, 34(5):706-712(in Chinese).
[16] 卜少科, 薛雅心. 高超声速磁流体数值模拟研究[J]. 现代电子技术, 2014, 37(5):137-142. BU S K, XUE Y X. Research on numerical simulation of hypersonic MHD[J]. Modern Electronics Technique, 2014, 37(5):137-142(in Chinese).
[17] 李开, 刘伟强. 高超声速飞行器磁控热防护系统建模分析[J]. 物理学报, 2016, 65(6):064701. LI K, LIU W Q. Analysis of the magnetohydrodynamic heat shield system for hypersonic vehicles[J]. Acta Physica Sinica, 2016, 65(6):064701(in Chinese).
[18] 李开, 柳军, 刘伟强. 高超声速飞行器磁控热防护霍尔电场数值方法研究[J]. 物理学报, 2017, 66(8):084702. LI K, LIU J, LIU W Q. Numerical solution procedure for Hall electric field of the hypersonic magnetohydrodynamic heat shield system[J]. Acta Physica Sinica, 2017, 66(8):084702(in Chinese).
[19] 姚霄, 刘伟强, 谭建国. 高速飞行器磁控阻力特性[J]. 物理学报, 2018,67(17):174702. YAO X, LIU W Q, TAN J G. Analysis of the magnetohydrodynamic heat shield system for hypersonic vehicles[J]. Acta Physica Sinica, 2018, 67(17):174702(in Chinese).
[20] 高铁锁,董维中,丁明松,等. 物理化学模型对高温流场等离子体分布的影响[J]. 空气动力学学报, 2013, 31(5):541-545. GAO T S, DONG W Z, DING M S, et al. The effects of physicochemical models on distribution of plasma in high-temperature flowfield[J]. Acta Aerodynamica Sinica, 2013, 31(5):541-545(in Chinese).
[21] 高铁锁, 董维中, 江涛, 等. 化学模型对数值模拟等离子体流动的影响研究[J]. 宇航学报, 2016, 37(10):1193-1199. GAO T S, DONG W Z, JIANG T, et al. Research on effects of chemical models on numerical simulation of plasma flow[J]. Journal of Astronautics, 2016, 37(10):1193-1199(in Chinese).
[22] 丁明松, 江涛, 董维中,等. 三维等离子体MHD气动热环境数值模拟[J]. 航空学报, 2017, 38(8):121030. DING M S, JIANG T, DONG W Z, et al. Numerical simulation of 3D plasma MHD aero-thermal environment[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(8):121030(in Chinese).
[23] MACHERET S O, SHNEIDER M N. Modeling of MHD power generation on board reentry vehicles:AIAA-2004-1024[R]. Reston, VA:AIAA, 2004.
[24] BITYURIN V, BOCHAROV A, LINEBERRY J. MHD flow control in hypersonic flight:AIAA-2005-3225[R]. Reston, VA:AIAA, 2005.
[25] 丁明松,董维中,高铁锁,等.局部催化特性差异对气动热环境影响的计算分析[J]. 航空学报, 2018, 39(3):121588. DING M S, DONG W Z, GAO T S, et al. Computational analysis of influence of differences in local catalytic properties on aero-thermal environment[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(3):121588(in Chinese).
[26] 丁明松, 董维中, 高铁锁, 等. 传感器催化特性差异对气动热影响的计算分析[J]. 宇航学报, 2017,38(12):1361-1371. DING M S, DONG W Z, GAO T S, et al. Computational analysis of the influence on aero-thermal environments caused by the catalytic property distinction of the heat flux sensor[J]. Journal of Astronautics, 2017,38(12):1361-1371(in Chinese).