星光导航技术专栏

基于EMD-CS的脉冲星周期超快速估计

  • 刘劲 ,
  • 韩雪侠 ,
  • 宁晓琳 ,
  • 陈晓 ,
  • 康志伟
展开
  • 1. 武汉科技大学 信息科学与工程学院, 武汉 430081;
    2. 北京航空航天大学 仪器科学与光电工程学院, 北京 100191;
    3. 上海卫星工程研究所, 上海 200240;
    4. 湖南大学 信息科学与工程学院, 长沙 410082

收稿日期: 2019-09-11

  修回日期: 2019-09-29

  网络出版日期: 2019-10-24

基金资助

国家自然科学基金(61873196,61501336,61772187)

Ultra-fast estimation of pulsar period based on EMD-CS

  • LIU Jin ,
  • HAN Xuexia ,
  • NING Xiaolin ,
  • CHEN Xiao ,
  • KANG Zhiwei
Expand
  • 1. School of Information Science and Engineering, Wuhan University of Science and Technology, Wuhan 430081, China;
    2. School of Instrumentation Science and Opto-electronics Engineering, Beihang University, Beijing 100191, China;
    3. Shanghai Institution of Satellite Engineering, Shanghai 200240, China;
    4. College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China

Received date: 2019-09-11

  Revised date: 2019-09-29

  Online published: 2019-10-24

Supported by

National Natural Science Foundation of China (61873196,61501336,61772187)

摘要

面向X射线脉冲星周期估计的压缩感知(CS)中测量矩阵尺寸大,进而导致计算量大。针对这一问题,提出了一种基于经验模态分解-压缩感知(EMD-CS)的脉冲星周期超快速估计方法。将不同畸变度的脉冲轮廓进行EMD分解,得到一系列固有模态函数(IMF)。由于IMF包含了不同时间尺度的局部特征信号,脉冲轮廓畸变度这一微弱局部特征可体现在某些IMF中。采用迭代剔除法剔除冗余的IMF,剩下的IMF构成了测量矩阵。由于IMF的数量较少,采样率大幅减少。利用EMD-CS可实现X射线脉冲星周期超快速估计。通过计算复杂度分析结果可知,采样率与计算量呈正比关系。仿真结果中表明,EMD-CS的采样率为0.25%,仅为FFT-CS的1/29,因而计算量更小。

本文引用格式

刘劲 , 韩雪侠 , 宁晓琳 , 陈晓 , 康志伟 . 基于EMD-CS的脉冲星周期超快速估计[J]. 航空学报, 2020 , 41(8) : 623486 -623486 . DOI: 10.7527/S1000-6893.2019.23486

Abstract

In the Compressed Sensing (CS) for X-ray pulsar period estimation, the large size of measurement matrix leads to a large amount of calculation. To solve this problem, an ultra-fast pulsar period estimation method based on Empirical Mode Decomposition-Compressed Sensing (EMD-CS ) is proposed. The pulse profiles of multi-distortions are decomposed by EMD to obtain a series of Intrinsic Mode Functions (IMF). As the IMFs contain local characteristic signals at different time scales, the weak local features of the pulse profile distortion can be reflected in some IMFs. The iteration and elimination method is used to eliminate redundant IMFs, and the remaining IMFs form the measurement matrix. Due to the small number of IMFs, the sampling rate is greatly reduced. By using the EMD-CS method, we can realize ultra-fast period estimation of X-ray pulsars. From the results of calculation complexity analysis, we can know that the sampling rate is proportional to the amount of calculation. The simulation results show that the sampling rate of EMD-CS is 0.25%, which is only 1/29 of FFT-CS. Thus, the calculation amount of EMD-CS is smaller than that of FFT-CS.

参考文献

[1] 杨廷高.X射线脉冲星脉冲到达航天器时间测量[J].空间科学学报,2008,28(4):330-334. YANG T G. Determination of X-ray pulsar pulse time of arrival at spacecraft[J]. Chinese Journal of Space Science, 2008,28(4):330-334(in Chinese).
[2] 林晴晴,帅平,黄良伟,等.一种高精度的X射线脉冲星导航TOA估计方法[J].宇航学报,2016,37(6):704-710. LIN Q Q, SHUAI P, HUANG L W, et al. A high precision TOA estimation method for X-ray pulsar-based navigation system[J]. Journal of Astronautics, 2016, 37(6):704-710(in Chinese).
[3] SHEIKH S I, PINES D J, RAY P S, et al. Spacecraft navigation using X-ray pulsars[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(1):49-63.
[4] EMADZADEH A A, SPERER J L. X-Ray pulsar-based relative navigation using epoch folding[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(4):2317-2328.
[5] ZHANG H, XU L P. An improved phase measurement method of integrated pulse profile for pulsar[J]. Science China, 2011, 54(9):2263-2270.
[6] 孙海峰, 包为民, 方海燕, 等. X射线脉冲轮廓稳定性对导航精度的影响[J]. 物理学报, 2014, 63(6):441-448. SUN H F, BAO W M, FANG H Y, et al. Effect of stability of X-ray pulsar profiles on range measurement accuracy in X-ray pulsar navigation[J]. Acta Physica Sinica, 2014, 63(6):441-448(in Chinese).
[7] SONG J N, XU G D, DONG L M, et al. Pulse period estimation method based on TOA information[J]. Acta Photonica Sinica, 2017, 46(5):16-25.
[8] LIU J, WU J, XIONG L, et al. Fast position and velocity determination for pulsar navigation using NML and LSM[J]. Chinese Journal of Electronics, 2017, 26(6):1325-1329.
[9] 褚永辉, 王大轶, 熊凯, 等. X射线脉冲星导航测量延时补偿方法研究[J]. 宇航学报, 2012, 33(11):1617-1622. CHU Y H, WANG D Y, XIONG K, et al. Research on measurement time-delay compensation on X-ray pulsar-based navigation[J]. Journal of Astronautics, 2012, 33(11):1617-1622(in Chinese).
[10] LIU J, FANG J C, KANG Z W, et al. Novel algorithm for X-ray pulsar navigation against doppler effects[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(1):228-241.
[11] HUANG L W, LIANG B, ZHANG T. Pulse phase and doppler frequency estimation of X-ray pulsars under conditions of spacecraft and binary motion and its application in navigation[J]. Science China, Physics, Mechanics and Astronomy, 2013, 56(4):848-858.
[12] LYNE A G, GRAHAM-SMITH F. Book review:Pulsar astronomy[J]. Journal of the British Astronomical Association, 1999, 109(1):145.
[13] BURNS W R, CLARK B G. Pulsar search techniques[J]. Astronomy & Astrophysics, 1969, 2(1):280-287.
[14] 李建勋, 柯熙政. 基于循环平稳信号相干统计量的脉冲星周期估计新方法[J]. 物理学报, 2010,59(11):8304-8310. LI J X, KE X Z. Period estimation method for weak pulsars based on coherent statistic of cyclostationary signal[J]. Acta Physica Sinica, 2010, 59(11):8304-8310(in Chinese).
[15] 李建勋, 柯熙政, 赵宝升. 一种脉冲星周期的时域估计新方法[J]. 物理学报, 2012, 61(6):537-543. LI J X, KE X Z, ZHAO B S. A new time-domain estimation method for period of pulsars[J]. Acta Physica Sinica, 2012, 61(6):537-543(in Chinese).
[16] 周庆勇, 姬剑锋, 任红飞. 非等间隔计时数据的X射线脉冲星周期快速搜索算法[J]. 物理学报, 2013, 62(1):525-532. ZHOU Q Y, JI J F, REN H F. The quick search algorithm of pulsar period based on unevenly spaced timing data[J]. Acta Physica Sinica, 2013, 62(1):525-532(in Chinese).
[17] ZHANG H, XU L P, XIE Q. Modeling and doppler measurement of X-ray pulsar[J]. Science China (Physics, Mechanics & Astronomy), 2011, 54(6):1068-1076.
[18] 谢强, 许录平, 张华. 基于轮廓特征的X射线脉冲星信号多普勒估计[J]. 宇航学报, 2012, 33(9):1301-1307. XIE Q, XU L P, ZHANG H, et al. Doppler estimation of X-ray pulsar signals based on profile feature[J]. Journal of Astronautics, 2012, 33(9):1301-1307(in Chinese).
[19] DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4):1289-1306.
[20] BOYER C, BIGOT J, WEISS P. Compressed sensing with structured sparsity and structured acquisition[J]. Applied & Computational Harmonic Analysis, 2019, 46(2):312-350.
[21] 苏哲,许录平,甘伟.基于压缩感知的脉冲星轮廓构建算法[J].中国科学:物理学力学天文学,2011,41(5):681-684. SU Z, XU L P, GAN W. Pulsar profile construction algorithm based on compressed sensing[J]. Scientia Sinica (Physica, Mechanica & Astronomic), 2011, 41(5):681-684(in Chinese).
[22] 康志伟,吴春艳,刘劲,等.基于两级压缩感知的脉冲星时延估计方法[J]. 物理学报, 2018, 67(9):285-292. KANG Z W, WU C Y, LIU J, et al. Pulsar time delay estimation method based on two-level compressed sensing[J]. Acta Physica Sinica, 2018, 67(9):285-292(in Chinese).
[23] SHEN L R, LI X P, SUN H F, et al. A robust compressed sensing based method for X-ray pulsar profile construction[J]. Optik-International Journal for Light and Electron Optics, 2016, 127(10):4379-4385.
[24] LIU J, YANG Z H, KANG Z W, et al. Fast CS-based pulsar period estimation method without tentative epoch folding and its CRLB[J]. Acta Astronautica, 2019, 160(1):90-100.
[25] HUANG N E, ZHENG S, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings Mathematical Physical & Engineering Sciences, 1998, 454(1971):903-995.
[26] TAI G, DENG Z. An improved EMD method based on the multi-objective optimization and its application to fault feature extraction of rolling bearing[J]. Applied Acoustics, 2017, 127(1):46-62.
文章导航

/