电子电气工程与控制

风电场雷达杂波动态重构抑制方法

  • 胡旭超 ,
  • 谭贤四 ,
  • 曲智国 ,
  • 罗艺 ,
  • 池鹏飞
展开
  • 1. 空军预警学院 三系, 武汉 430014;
    2. 哈尔滨工程大学 信息与通信工程学院, 哈尔滨 150000

收稿日期: 2019-07-09

  修回日期: 2019-07-22

  网络出版日期: 2019-10-24

基金资助

国家自然科学基金(61401504)

Wind turbine clutter suppression method based on dynamic reconstruction

  • HU Xuchao ,
  • TAN Xiansi ,
  • QU Zhiguo ,
  • LUO Yi ,
  • CHI Pengfei
Expand
  • 1. NO.3 Department, Air Force Early Warning Academy, Wuhan 430014, China;
    2. School of Information and Communication, Harbin Engineering University, Harbin 150000, China

Received date: 2019-07-09

  Revised date: 2019-07-22

  Online published: 2019-10-24

Supported by

National Natural Science Foundation of China (61401504)

摘要

随着风电场的大范围建设,风轮机杂波对雷达的干扰问题日益严重,常规杂波抑制方法难以有效解决风轮机杂波(WTC)干扰问题,因此提出了一种利用动态字典对风轮机杂波进行稀疏重构进而抑制的方法。首先,建立了WTC干扰下的雷达信号模型并分析了风轮机杂波的信号特征。其次,依据WTC的时频特征提出了一种微动参数粗估计方法,利用粗估计结果缩小了字典稀疏重构参数范围,在此基础上利用正交匹配追踪(OMP)算法对字典进行动态生成,并逐级更新字典原子。最后,通过动态字典对风轮机杂波信号进行稀疏重构,从而实现了对WTC的有效抑制。通过仿真实验,分析了风轮机杂波对目标检测的干扰影响,验证了基于动态稀疏重构的风电场杂波抑制方法在不同情况下的有效性。

本文引用格式

胡旭超 , 谭贤四 , 曲智国 , 罗艺 , 池鹏飞 . 风电场雷达杂波动态重构抑制方法[J]. 航空学报, 2020 , 41(1) : 323269 -323269 . DOI: 10.7527/S1000-6893.2019.23269

Abstract

With the wide-scale construction of wind farms, the interference problem of the Wind Turbine Clutter (WTC) on radar detection is becoming more and more serious, but the conventional clutter suppression method is difficult to solve this problem. Therefore, this paper proposes a wind turbine clutter suppression method using dynamic dictionary to sparse reconstruction. Firstly, the radar signal model under the WTC is established and the signal characteristics of wind turbine clutter are analyzed. Secondly, a rough estimation method of micro-motion parameters is proposed based on the time-frequency characteristics of WTC. Based on the rough estimation results, the range of dictionary sparse reconstruction parameter is reduced. On this basis, the dictionary is dynamically generated by the Orthogonal Matching Pursuit (OMP) algorithm to update the basis step by step. Finally, the sparse reconstruction of the WTC is realized by the dynamic dictionary to achieve the purpose of suppressing the WTC. Through the simulation, the influence of wind turbine clutter on the target detection is analyzed, and the effectiveness of the WTC suppression method based on dynamic sparse reconstruction in different situations is proved.

参考文献

[1] 何炜琨, 窄秋苹, 郭双双, 等. 基于微多普勒特征的风轮机雷达杂波检测[J]. 信号处理, 2017, 33(4):496-504. HE W K, ZHAI Q P, GUO S S, et al. Wind turbine radar clutter detection method based on micro-Doppler characteristics of wind turbine[J]. Journal of Signal Processing, 2017, 33(4):496-504(in Chinese).
[2] 何炜琨, 吴仁彪, 王晓亮. 风电场对雷达设备的影响评估与干扰抑制技术研究现状与展望[J]. 电子与信息学报, 2017, 39(7):1748-1758. HE W K, WU R B, WANG X L. The review and prospect on the influence evaluation and interference suppression of wind farms on the radar equipment[J]. Journal of Electronics & Information Technology, 2017, 39(7):1748-1758(in Chinese).
[3] SOZEN D, KARTAL M. Scatter and Doppler effect of wind power plants to land radars[C]//Uksim International Conference on Modelling a Simulation. Piscataway, NJ:IEEE Press, 2012:453-458.
[4] DE LA VEGA D, JAMES C G, LARS N, et al. Mitigation techniques to reduce the impact of wind turbines on radar services[J]. Energies, 2013, 6:2859-2873.
[5] POUPART G J. Wind farms impact on radar aviation interests, final report:FESW/14/00614/00/REP[R]. London:QinetiQ, 2003.
[6] OHS R R, SKIDMORE G J, BEDROSIAN G. Modeling the effects of wind turbines on radar returns[C]//Military Communications Conference. Piscataway, NJ:IEEE Press, 2010:272-276.
[7] WANG J, LOK Y F, HUBBARD O, et al. Impact of wind turbines on ATC radars and mitigation results[C]//2013 IEEE Radar Conference. Piscataway, NJ:IEEE Press, 2013:1-4.
[8] RASHID L, BROWN A. Partial treatment of wind turbine blades with radar absorbing materials (RAM) for RCS reduction[C]//Proceedings of the 4th European Conference on Antennas and Propagation. Piscataway, NJ:IEEE Press, 2010:1-5.
[9] SCHOUTEN T, JONG D. Radar and wind turbines:A guide to acceptance criteria[C]//Proceedings of the 2010 IEEE International Radar Conference. Piscataway, NJ:IEEE Press, 2010:1355-1361.
[10] 何炜琨, 窄秋苹, 王晓亮, 等. 扫描模式航管监视雷达风电场杂波检测与抑制[J]. 航空学报, 2016, 37(4):1316-1326. HE W K, ZHAI Q P, WANG X L, et al. Wind turbine clutter detection and mitigation in scanning ATC surveillance radar[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(4):1316-1326(in Chinese).
[11] 吴仁彪, 毛建, 王晓亮, 等. 航管一次雷达抗风电场干扰目标检测方法[J]. 电子与信息学报, 2013, 35(3):754-758. WU R B, MAO J, WANG X L, et al. Target detection of primary surveillance radar in wind farm clutter[J]. Journal of Electronics & Information Technology, 2013, 35(3):754-758(in Chinese).
[12] UYSAL F, SELESNICK I, ISOM B M. Mitigation of wind turbine clutter for weather radar by signal separation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(5):2925-2934.
[13] UYSAL F, PILLAI U, SELESNICK I, et al. Signal decomposition for wind turbine clutter mitigation[C]//2014 IEEE Radar Conference. Piscataway, NJ:IEEE Press, 2014:60-63.
[14] NAQVI A, LING H. Signal filtering technique to remove Doppler clutter caused by wind turbines[J]. Microwave & Optical Technology Letters, 2012, 54(6):1455-1460.
[15] 李开明,张群,雷磊,等. 基于动态字典的卡车目标微动参数估计方法[J]. 电子学报,2016,44(11):2618-2624. LI K M, ZHANG Q, LEI L, et al. Micro-motion parameters estimation for truck target based on dynamic dictionary[J]. Acta Electronica Sinica, 2016,44(11):2618-2624(in Chinese).
[16] 陈永彬, 李少东, 杨军, 等. 旋翼叶片回波建模与闪烁现象机理分析[J]. 物理学报, 2016, 65(13):281-291. CHEN Y B, LI S D, YANG J, et al. Rotor blades echo modeling and mechanism analysis of flashes phenomena[J]. Acta Physica Sinica, 2016, 65(13):281-291(in Chinese).
[17] 夏赛强, 向虎, 陈文峰, 等. 基于CEMD的旋翼微动目标杂波抑制方法[J]. 航空学报, 2018, 39(9):332802. XIA S Q, XIANG H, CHEN W F, et al. Clutter suppression method for rotor micro-motion target based on CEMD[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(9):332802(in Chinese).
[18] MAHAFZA B R. 雷达系统分析与设计(MATLAB版)[M]. 陈志杰, 罗群, 沈齐, 译. 北京:电子工业出版社, 2008:89-91. MAHAFZA B R. Radar systems analysis and design using MATLAB[M]. CHEN Z J, LUO, Q, SHEN Q, translated. Beijing:Publishing House of Electronics Industry, 2008:89-91(in Chinese).
[19] CHEN V C. 雷达中的微多普勒效应[M]. 吴顺君, 杜兰, 刘宏伟, 译. 北京:电子工业出版社, 2013:93-109. CHEN V C. The micro-Doppler effect in radar[M]. WU S J, DU L, LIU H W, translated. Beijing:Publishing House of Electronics Industry, 2013:93-109(in Chinese).
[20] 陈永彬, 李少东, 杨军. 一种旋翼叶片微动特征提取新方法[J]. 雷达科学与技术, 2017,15(1):13-28. CHEN Y B, LI S D, YANG J, et al. A new method for micro-motion signature extraction of rotor blades[J]. Radar Science and Technology, 2017, 15(1):13-28(in Chinese).
[21] 刘成龙. MATLAB图像处理[M]. 北京:清华大学出版社, 2017:327-331. LIU C L. Image processing with MATLAB[M]. Beijing:Tsinghua University Press, 2017:327-331(in Chinese).
[22] 周伟栋, 杨震, 于云. 改进的正交匹配追踪语音增强算法[J]. 信号处理, 2016, 32(3):287-295. ZHOU W D, YANG Z,YU Y. Speech enhancement by using modified orthogonal matching pursuit algorithm[J]. Journal of Signal Processing, 2016, 32(3):287-295(in Chinese).
[23] 陈伯孝. 现代雷达系统分析与设计[M]. 西安:西安电子科技大学出版社, 2012:233-234. CHEN B X. Modern radar system analysis and design[M]. Xi'an:Xidian University Press, 2012:233-234(in Chinese).
文章导航

/