固体力学与飞行器总体设计

基于应力分布模型的随机疲劳加速试验设计

  • 穆童 ,
  • 孟鸽 ,
  • 谢里阳 ,
  • 张建波 ,
  • 石朝成
展开
  • 1. 东北大学 机械工程与自动化学院, 沈阳 110819;
    2. 航空动力装备振动及控制教育部重点实验室, 沈阳 110819;
    3. 上海航空材料结构检测股份有限公司, 上海 201210

收稿日期: 2019-06-19

  修回日期: 2019-09-09

  网络出版日期: 2019-10-24

基金资助

国家自然科学基金-辽宁联合基金(U1708255)

Accelerated random fatigue test design based on stress distribution model

  • MU Tong ,
  • MENG Ge ,
  • XIE Liyang ,
  • ZHANG Jianbo ,
  • SHI Chaocheng
Expand
  • 1. School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819;
    2. Key Laboratory of Vibration and Control of Aero-Propulsion System, Ministry of Education, Shenyang 110819;
    3. Shanghai Aeronautical Material and Structures Testing Co., LTD, Shanghai 201210, China

Received date: 2019-06-19

  Revised date: 2019-09-09

  Online published: 2019-10-24

Supported by

National Natural Science Foundation of China Liaoning Joint Fund (U1708255)

摘要

将两段式S-N曲线应用于Dirlik随机振动疲劳寿命预测模型,分段计算各自的疲劳损伤并进行叠加。基于该模型所模拟的应力幅值分布,推导了在两段式S-N曲线的情况下激励放大倍数同疲劳寿命之间的等效关系,并提出了基于该等效关系的加速试验寿命换算方法,为加速试验应力等级的确定提供了参考。针对随机振动中小应力幅占比较大的情况,该方法优化了这一部分的损伤计算方式,同时该方法还可以推广至超高周疲劳等需要使用多段式S-N曲线表达疲劳性能的情况中去,得到更加贴近实际的理论疲劳寿命与加速寿命间的等效关系。通过分析算例表明,在两段式S-N曲线下,应力与寿命也大体呈现出了两段式的对数线性关系,并使用文献中的试验数据进行了验证。

本文引用格式

穆童 , 孟鸽 , 谢里阳 , 张建波 , 石朝成 . 基于应力分布模型的随机疲劳加速试验设计[J]. 航空学报, 2020 , 41(2) : 223229 -223229 . DOI: 10.7527/S1000-6893.2019.23229

Abstract

The two-stage S-N curve is applied to the Dirlik random vibration fatigue life prediction model. The fatigue damage of each stress interval is calculated in segments and superimposed together. Based on the stress amplitude distribution estimated by the Dirlik model, the equivalent relationship between the magnification of excitation and fatigue life under the two-stage S-N curve is deduced. A life conversion method of accelerated life test based on the equivalent relationship is proposed, which provides a reference for the determination of stress level for accelerated life tests. The method can be generalized to the multi-stage S-N curve, like the very high cycle fatigue. For the large ratio of small stress amplitude in the random vibration fatigue, the damage computing method of this part is optimized, and the more realistic equivalent relationship between theoretical fatigue life and accelerated life is obtained. The analysis of an example shows that under the two-stage S-N curve, the relationship between stress and life also shows a logarithmic linear relationship of two-stage, which is verified by using the experimental data in the literature.

参考文献

[1] WÖHLER A. Versuche zur Ermittlung der auf die Eisenbahnwagenachsen einwirkenden Kräfte und die Widerstandsfähigkeit der Wagen-Achsen[J]. Zeitschrift fär Bauwesen, 1860, 10(1860):583-614(in German).
[2] CRANDALL S H. Random vibration[M]. New York:Technology Press of MIT and John Wiley and Sons, 1958.
[3] CRANDALL S H, MARK W D. Random vibration in mechanical systems[M]. New York:Academic Press, 1963.
[4] BENDAT J S, PIERSOL A G. Measurement and analysis of random data[M]. New York:John Wiley& Sons, 1966.
[5] WIRSCHING P H, LIGHT M C. Fatigue under wide band random stresses[J]. Journal of the Structural Division, 1980, 106(7):1593-1607.
[6] WIRSCHING P H, SHEHATA A M. Fatigue under wide band random stresses using the rain-flow method[J]. Journal of Engineering Materials and Technology, 1977, 99(3):205-211.
[7] CHAUDHURY G K, DOVER W D. Fatigue analysis of offshore platforms subject to sea wave loadings[J]. International Journal of Fatigue, 1985, 7(1):13-19.
[8] DIRLIK T. Application of computers in fatigue analysis[D]. Coventry:University of Warwick, 1985.
[9] BENASCIUTTI D, TOVO R. Comparison of spectral methods for fatigue analysis of broad-band Gaussian random processes[J]. Probabilistic Engineering Mechanics, 2006, 21(4):287-299.
[10] 何选森. 随机过程[M]. 北京:人民邮电出版社, 2009:70-74. HE X S. Stochastic processes[M]. Beijing:Posts and Telecommunications Press, 2009:70-74(in Chinese).
[11] 陆大. 随机过程及其应用[M]. 北京:清华大学出版社, 2012:101-112. LU D J. Stochastic processes and their application[M]. Beijing:Tsinghua University Press, 2012:101-112(in Chinese).
[12] 周凌波. 航空典型结构件的随机振动疲劳寿命分析[D]. 南京:南京航空航天大学, 2014. ZHOU L B. Random vibration fatigue life analysis of aircraft typical structures[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2014(in Chinese).
[13] 黄义科. 基于频域的多轴随机振动疲劳寿命预测[D]. 成都:西南交通大学, 2015. HUANG Y K. Prediction of multiaxial random vibration fatigue life based on frequency domain[D]. Chengdu:Southwest Jiaotong University, 2015(in Chinese).
[14] 宋宇. 多轴随机载荷下疲劳寿命预测方法的研究[D]. 沈阳:东北大学, 2012. SONG Y. The multiaxial fatigue life estimation of metal structures under random loading[D]. Shenyang:Northeastern University, 2012(in Chinese).
[15] 谭秀峰,谢里阳,马洪义,等.基于对数正态分布的多部位疲劳结构的疲劳寿命预测方法[J]. 航空学报, 2017, 38(2):220376. TAN X F, XIE L Y, MA H Y, et al. Fatigue life prediction method for multi-site fatigue structure with lognormal fatigue life[J]. Acta Aeronautica et Astronautica Sinica. 2017, 38(2):220376(in Chinese).
[16] 胡磊. 一种随机振动疲劳寿命分析技术研究[D]. 南京:南京航空航天大学, 2012. HU L. Research on a kind of random vibration fatigue life analysis technique[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2012(in Chinese).
[17] 管鹏. 铁道车辆设备随机振动疲劳寿命分析[D]. 成都:西南交通大学, 2012. GUAN P. Fatigue life analysis of random vibration for rolling stock equipment[D]. Chengdu:Southwest Jiaotong University, 2012(in Chinese).
[18] 贺光宗,陈怀海,贺旭东. 一种多轴向随机激励下结构疲劳寿命分析方法[J]. 振动与冲击, 2015, 34(7):59-63. HE G Z, CHEN H H, HE X D. Vibration fatigue life prediction method for structures under multi-axial random excitations[J].Journal of Vibration and Shock, 2015, 34(7):59-63(in Chinese).
[19] 王明珠,姚卫星. 随机振动载荷下缺口件疲劳寿命分析的频域法[J]. 南京航空航天大学学报, 2008, 40(4):489-492. WANG M Z, YAO W X. Frequency domain method for fatigue life analysis on notched specimens under random vibration loading[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2008, 40(4):489-492(in Chinese).
[20] 张方,周凌波,姜金辉,等. 基于频域法的随机振动疲劳加速试验设计[J]. 振动·测试与诊断, 2016, 36(4):659-664, 807-808. ZHANG F, ZHOU L B, JIANG J H. Random vibration fatigue accelerated test design based on frequency domain methods[J]. Journal of Vibration, Measurement and Diagnosis, 2016, 36(4):659-664, 807-808(in Chinese).
[21] 洪友士,孙成奇,刘小龙. 合金材料超高周疲劳的机理与模型综述[J]. 力学进展, 2018, 48(1):1-65. HONG Y S, SUN C Q, LIU X L. A review on mechanisms and models for very-high-cycle fatigue of metallic materials[J]. Advances in Mechanics, 2018, 48(1):1-65(in Chinese).
[22] 机械工程材料性能数据手册编委会. 机械工程材料性能数据手册[M]. 北京:机械工业出版社, 1995:197. Editorial Committee of Mechanical Engineering Materials Performance Data Manual. Mechanical engineering materials performance data manual[M]. Beijing:China Machine Press, 1995:197(in Chinese).
[23] 施荣明, 朱广荣, 吴枫,等. 军用装备实验室环境试验方法第16部分振动试验:GJB 150.16A-2009[S]. 2009 SHI R M, ZHU G R, WU F, et al. Laboratory environment test methods for military materiel-Part 16:Vibration test:GJB 150.16A-2009[S]. 2009(in Chinese).
[24] CLEVENSON S A, STEINER R. Fatigue life under random loading for several power spectral shapes:NASA-TR-266[R]. Washington, D.C.:NASA, 1967.
文章导航

/