固体力学与飞行器总体设计

MIMO随机振动试验控制的逆多步预测模型法

  • 郑威 ,
  • 陈怀海
展开
  • 南京航空航天大学 机械结构力学及控制国家重点实验室, 南京 210016

收稿日期: 2019-03-14

  修回日期: 2019-09-17

  网络出版日期: 2019-10-24

基金资助

江苏高校优势学科建设工程资助项目

Inverse multi-step prediction model method for MIMO random vibration test control

  • ZHENG Wei ,
  • CHEN Huaihai
Expand
  • State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2019-03-14

  Revised date: 2019-09-17

  Online published: 2019-10-24

Supported by

The Priority Academic Program Development of Jiangsu Higher Education Institutions

摘要

多输入多输出(MIMO)随机振动试验在产品可靠性验证中扮演重要角色。逆系统方法作为一种时域方法,直接由参考信号(即期望得到的响应信号)生成驱动信号,但容易产生不稳定的结果。本文以系统的有限差分模型为基础,推导了逆多步预测模型,并建立了该逆模型与矩阵幂次算法结合的MIMO随机振动试验方法。通过悬臂梁模型进行双输入双输出仿真试验,验证了逆多步预测模型进行MIMO随机振动试验驱动生成的可行性。在三轴振动台上进一步验证该方法进行MIMO随机振动试验控制的能力。

本文引用格式

郑威 , 陈怀海 . MIMO随机振动试验控制的逆多步预测模型法[J]. 航空学报, 2020 , 41(2) : 223000 -223000 . DOI: 10.7527/S1000-6893.2019.23000

Abstract

Multi Input Multi Output (MIMO) random vibration test is of utter importance in product validation. As a type of time domain method, inverse system methods are capable of generating drive signals directly from reference ones (i.e., the desired response signals). However, in practice, these methods are prone to produce unstable results. To address this issue, an inverse multi-step prediction model is induced from the finite difference model of the system, and a MIMO random vibration test control scheme utilizing both the inverse multi-step prediction model and matrix power algorithm are proposed. First, a simulation of double-input-double-output-random-vibration test on a cantilever beam is conducted to show that the inverse multi-step prediction model can generate drive signals needed to satisfy the control requirement. After that, the capability of the proposed MIMO random vibration test control scheme is further validated in a test performed on a three-axis shaker.

参考文献

[1] 邹学锋, 郭定文, 潘凯, 等. 综合载荷环境下高超声速飞行器结构多场联合强度试验技术[J]. 航空学报, 2018, 39(12):222326. ZOU X F, GUO D W, PAN K, et al. Test technique for multi-load combined strength of hypersonic vehicle structure under complex loading environment[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12):222326(in Chinese).
[2] CUI X, CHEN H, HE X, et al. Matrix power control algorithm for multi-input multi-output random vibration test[J]. Chinese Journal of Aeronautics, 2011, 24(6):741-748.
[3] CUI S, CHEN H, HE X, et al. Multi-input multi-output random vibration control using Tikhonov filter[J]. Chinese Journal of Aeronautics, 2016, 29(6):1649-1663.
[4] 张步云, 汪若尘, 曾发林. MIMO随机加正弦振动试验J-阻抗复合控制算法[J]. 振动.测试与诊断, 2017, 37(6):1089-1093,1274. ZHANG B Y, WANG R C, ZENG F L. J-impedance compound control algorithm for MIMO random plus sinusoidal vibration test[J]. Journal of Vibration, Measurement & Diagnosis, 2017, 37(6):1089-1093,1274(in Chinese).
[5] ZHENG R, CHEN H, HE X. Control method for multi-input multi-output non-Gaussian random vibration test with cross spectra consideration[J]. Chinese Journal of Aeronautics, 2017, 30(6):1895-1906.
[6] CUI S, CHEN H, HE X. Time-domain approach for multi-exciter random environment test[J]. Journal of Sound and Vibration, 2017, 398:52-69.
[7] CUI S, CHEN H, HE X, et al. Control algorithm update for multi-input multi-output random environment test[J]. Mechanical Systems and Signal Processing, 2018, 111:643-662.
[8] 陈怀海, 王鹏宇, 孙建勇. 基于逆系统方法的多输入多输出非高斯驱动信号生成[J]. 航空学报, 2016, 37(5):1544-1551. CHEN H H, WANG P Y, SUN J Y. Generation of multi-input multi-output non-Gaussian driving signal based on inverse system method[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(5):1544-1551(in Chinese).
[9] KAMMER D C. Input force reconstruction using a time domain technique[J]. Journal of Vibration and Acoustics, 1998, 120(4):868-874.
[10] STELTZNER A D, KAMMER D C. Input force estimation using an inverse structural filter[C]//Proceedings of the 17th International Modal Analysis Conference. Kissimmee, Florida:Society for Experimental Mechanics, 1999:954-960.
[11] ALLEN M, CARNE T. Comparison of Inverse Structural Filter (ISF) and Sum of Weighted Accelerations Time (SWAT) domain force identification methods[C]//47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, VA:AIAA, 2006.
[12] ALLEN M S, CARNE T G. Delayed, multi-step inverse structural filter for robust force identification[J]. Mechanical Systems and Signal Processing, 2008, 22(5):1036-1054.
[13] ZHENG R, CHEN H, HE X, et al. Probability distributions control for multi-input multi-output stationary non-Gaussian random vibration test[J]. Journal of Vibration and Control, 2017, 24(21):5201-5210.
[14] ZHENG R, CHEN H, HE X. Control method for multiple-input multiple-output non-gaussian random vibration test[J]. Packaging Technology and Science, 2017, 30(7):331-345.
[15] 廖林雨. 结构振动的逆系统预测控制[D]. 武汉:华中科技大学, 2011:9-17. LIAO L Y. Inverse system predictive control of structural vibration[D]. Wuhan:Huazhong University of Science and Technology, 2011:9-17(in Chinese).
[16] 朱锐, 杭晓晨, 姜东, 等. 基于奇异值分解的ERA改进算法及模态定阶[J]. 振动.测试与诊断, 2018, 38(1):115-122. ZHU R, HANG X C, JIANG D, et al. Improved ERA algorithm and modal order determination based on SVD[J]. Journal of Vibration, Measurement and Diagnosis, 2018, 38(1):115-122(in Chinese).
[17] 蒲黔辉, 洪彧, 王高新, 等. 快速特征系统实现算法用于环境激励下的结构模态参数识别[J]. 振动与冲击, 2018, 37(6):55-60. PU Q H,HONG Y,WANG G X, et al. Fast eigensystem realization algorithm based structural modal parameters identification for ambient tests[J]. Journal of Vibration and Shock, 2018, 37(6):55-60(in Chinese).
[18] JUANG J N, PHAN M. Identification and control of mechanical systems[M]. Cambridge:Cambridge University Press, 2001:256-272.
[19] HANSEN P C. The truncated SVD as a method for regularization[J]. Bit Numerical Mathematics, 1987, 27(4):534-553.
[20] 吴太旗, 邓凯亮, 黄谟涛, 等. 一种改进的不适定问题奇异值分解法[J]. 武汉大学学报(信息科学版), 2011, 36(08):900-903,880. WU T Q, DENG K L, HUANG M T, et al. An improved singular values decomposition method for ill-posed problem[J]. Geomatics and Information Science of Wuhan University, 2011, 36(08):900-903,880(in Chinese).
[21] SMALLWOOD D O, PAEZ T L. A frequency domain method for the generation of partially coherent normal stationary time domain signals[J]. Shock and Vibration, 1991, 1(1):45-53.
文章导航

/