飞行器气动外形数值优化与设计专栏

ARI_OPT气动优化软件研究进展及应用综述

  • 魏闯 ,
  • 杨龙 ,
  • 李春鹏 ,
  • 张铁军
展开
  • 中国航空工业空气动力研究院, 高速高雷诺数气动力航空科技重点实验室, 沈阳 110034

收稿日期: 2019-08-12

  修回日期: 2019-09-18

  网络出版日期: 2019-10-17

基金资助

装备预研共用技术项目(41406030301)

Research progress and application of ARI_OPT software for aerodynamic shape optimization

  • WEI Chuang ,
  • YANG Long ,
  • LI Chunpeng ,
  • ZHANG Tiejun
Expand
  • Aero Science Key Lab of High Reynolds Aerodynamic Force at High Speed, AVIC Aerodynamics Research Institute, Shenyang 110034, China

Received date: 2019-08-12

  Revised date: 2019-09-18

  Online published: 2019-10-17

Supported by

Common Technolgy Project of Equipment Pre-research (41406030301)

摘要

针对飞行器气动外形精细化设计需求,为提高设计效率和设计质量,基于数值优化设计技术发展了气动优化设计工具ARI_OPT。ARI_OPT包含气动外形参数化、网格自动变形、高逼真度数值模拟、代理模型、高效优化算法等模块,分别简要介绍了各个模块基本的基本原理和方法及单个模块的验证结果。给出了ARI_OPT针对数值函数算例的功能验证结果和宽速域翼型、多段翼型和飞翼布局机翼等典型单目标和多目标气动外形优化问题的应用算例,表明了其可靠性和适用性。

本文引用格式

魏闯 , 杨龙 , 李春鹏 , 张铁军 . ARI_OPT气动优化软件研究进展及应用综述[J]. 航空学报, 2020 , 41(5) : 623370 -623370 . DOI: 10.7527/S1000-6893.2019.23370

Abstract

To improve the design efficiency and design effect of the aerodynamic shape of the aircraft, the aerodynamic optimization design tool ARI_OPT is developed based on the numerical optimization design technology. ARI_OPT includes modules such as aerodynamic shape parameterization, grid automatic generation, surrogate model optimization, multi-level numerical simulation, and high-efficiency optimization algorithm. The basic principles, methods, and verification results of each module are briefly introduced. The functional verification results of numerical function cases and the application results of the typical single-objective and multi-objective aerodynamic shape optimization problems such as wide-speed range airfoil, multi-element airfoil and flying wing are demonstrated by ARI_OPT. The results strongly prove the effectiveness of the design.

参考文献

[1] PEIGIN S,朱自强,EPSTEIN B.可应用于民机空气动力设计中的数值优化方法[J].航空学报,2014,35(1):58-69. PEIGIN S, ZHU Z Q, EPSTEIN B. Applicable numerical optimization methods for aerodynamic design of civil aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1):58-69(in Chinese).
[2] 周铸,黄江涛,高正红,等.民用飞机气动外形数值优化设计面临的挑战与展望[J].航空学报,2019,40(1):522370. ZHOU Z, HUANG J T, GAO Z H, et al. Challenges and prospects of numerical optimization design for large civil aircraft aerodynamic shape[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1):522370(in Chinese).
[3] 韩忠华,张瑜,许晨舟,等.基于代理模型的大型民机机翼气动优化设计[J].航空学报,2019,40(1):522398. HAN Z H,ZHANG Y,XU C Z, et al. Aerodynamic optimization design of large civil aircraft wings using surrogate-based model[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1):522398(in Chinese).
[4] SHANKARAN S, JAMESON A, MARTINELLI I. Continuous adjoint method for unstructured grids[J]. AIAA Journal, 2008, 46(5):226-239.
[5] PALACIOS F, ECONOMON T D, ARANAKE A C, et al. Stanford University Unstructured(SU2):Open-source analysis and design technology for turbulent flows:AIAA-2014-0243[R]. Reston:AIAA, 2014.
[6] PALACIOS F, ECONOMON T D, ARANAKE A C, et al. Stanford University Unstructured (SU2):An open-source integrated computational environment for multi-physics simulation and design:AIAA-2013-0287[R]. Reston:AIAA, 2013.
[7] LE D S T, HERLING W W, FATTA U J,et al. MDOPT-a multidisciplinary design optimization system using high order analysis codes:AIAA-2004-4567[R]. Reston:AIAA, 2004.
[8] NIELSEN E J,DISKIN B, YAMALEEV N K. Discrete adjoint-based design optimization of unsteady turbulent flows on dynamic unstructured grids[J]. AIAA Journal, 2010, 48(6):1195-1206.
[9] PARK M A. Low boom configuration analysis with FUN-3D adjoint simulation framework:AIAA-2011-3337[R]. Reston:AIAA, 2011.
[10] BREZILLON J,DWIUHT R P. Aerodynamic shape optimization using the discrete adjoint of the Navies-Stokes equations:Applications towards complex 3D configurations[C]//Proceedings of the CEAS/KATnet Conference on Key Aerodynamic Technologies, 2009.
[11] WIDHALM M A, HEPPERLE M. Comparison between gradient free and adjoint based aerodynamic optimization of a flying wing transport aircraft in the preliminary design[C]//AIAA 25th Applied Aerodynamics Conference. Reston:AIAA, 2007.
[12] CARRIER G, DESTARAC D, DUMONT A, et al. Gradient-based aerodynamic optimization with the e1sA software; AIAA-2014-0568[R]. Reston:AIAA, 2014.
[13] DUMONT A, LE PAPE A, PETER J,et al. Aerodynamic shape optimization of hovering rotors using a discrete adjoint of the Reynolds-averaged Navier-Stokes equadons[J]. Journal of the American Helicopter Society, 2011,56(3):1-11.
[14] HUANG J T, ZHOU Z, GAO Z H. Aerodynamic multi-objective integrated optimization based on principal component analysis[J]. Chinese Journal of Aeronautics, 2017, 30(4):1336-1348.
[15] 马晓永,范召林,吴文华,等.基于NURBS方法的机翼气动外形优化[J]. 航空学报,2011, 32(9):1616-1621. MA X Y, FAN Z L,WU W H,et al. Aerodynamic shape optimization for wing based on NURBS[J]. Acta Aeronautica et Astronautica Sinica, 2011,32(9):1616-1621(in Chinese).
[16] 李彬,邓有奇,唐静,等.基于三维非结构混合网格的离散伴随优化方法[J].航空学报,2014, 35(3):674-686. LI B, DENG Y Q, TANG J,et al. Discrete adjoint optimization method for 3D unstructured grid[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(3):674-686(in Chinese).
[17] 李静,高正红,赵柯.基于直接控制FFD参数化方法的跨声速层流翼身组合体稳健性设计[J].中国科学技术科学,2015,45(9):964-974. LI J,GAO Z H, ZHAO K. Robust design of transonic laminar wingbody configuration based on direct manipulated FFD technique[J]. Scientia Sinica Technologica, 2015,45(9):964-974(in Chinese).
[18] 白俊强,雷锐午,杨体浩,等.基于伴随理论的大型客机气动优化设计研究进展[J].航空学报,2019,40(1):522642. BAI J Q, LEI R W, YANG T H, et al. Progress of adjoint-based aerodynamic optimization design for large civil aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1):522642(in Chinese).
[19] 韩忠华. Kriging模型及代理优化算法研究进展[J].航空学报,2016, 37(11):3197-3225. HAN Z H. Kriging surrogate model and its application to design optimization:A review of recent progress[J]. Acta Aeronautics et Astronautica Sinica, 2016, 37(11):3197-3225(in Chinese).
[20] 赵童,张宇飞,陈海昕,等.面向三维机翼性能的超临界翼型优化设计方法[J].中国科学,2015, 45(10):89-101. ZHAO T, ZHANG Y F, CHEN H X,et al. Aerodynamics optimization method of supercritical airfoil geared to the performance of swept and tapered wing[J]. Scientia Sinica Technologica, 2015, 45(10):89-101(in Chinese).
[21] 招启军,张威,原昕,等.共轴刚性旋翼气动外形优化设计[J].南京航空航天大学学报,2019,51(2):160-165. ZHAO Q J, ZHANG W, YUAN X, et al. Optimization design of coaxial rotor aerodynamic planform[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2019, 51(2):160-165(in Chinese).
[22] 唐智礼,黄明烙.基于控制理论的Euler方程翼型减阻优化设计[J].空气动力学学报,2001, 19(3):262-270. TANG Z L,HUANG M K. Control theory based airfoil design using Euler equations[J]. Acta Aerodynamica Sinica, 2001,19(3):262-270(in Chinese).
[23] 杨洋,欧阳绍修,刘学强,等.基于伴随算子的跨声速机翼气动优化设计[J].南京航空航天大学学报,2013, 45(3):347-352. YANU Y, OUYANU S X, LIU X Q, et al. Aerodynamic optimization o1 transonic wing using discrete adjoint operator[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2013,45(3):347-352(in Chinese).
[24] 魏闯,张铁军,刘铁中.通用飞机富勒襟翼多目标优化[J].空气动力学学报,2017,35(4):572-578. WEI C, ZHANG T J, LIU T Z. Multi-objective optimization of Fowler flap on general aircraft[J]. Acta Aerodynamica Sinica, 2017,35(4):572-578(in Chinese).
[25] KULFAN B M, BUSSOLETTI J E. Fundamental parametric geometry representations for aircraft component shapes[C]//AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston:AIAA,2006.
[26] KULFAN B M. Universal parametric geometry representation method[J]. Journal of Aircraft, 2008, 45(1):142-158.
[27] HICKS R M, HENNE P A. Wing design by numerical optimization[J]. Journal of Aircraft, 1978,15(7):407-412.
[28] SEDERBERG T, PARRY S. Free-form deformation of solid geometric models[C]//Proceedings of the 13th Annual Conference on Computer Graphics and Interactive Techniques, 1986.
[29] 陈颂,白俊强,孙智伟,等.基于DFFD技术的翼型气动优化设计[J].航空学报,2014,35(3):695-705. CHEN S, BAI J Q, SUN Z W,et al. Aerodynamic optimization design of airfoil using DFFD technique[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(3):695-705.
[30] BOER A, SCHOOT M S, FACULTY H B. Mesh deformation based on radial basis function interpolation[J]. Computers and Structures, 2007,85:784-795.
[31] 林言中, 陈兵, 徐旭. 径向基函数插值方法在动网格技术中的应用[J]. 计算物理, 2012, 29(2):191-197. LIN Y Z, CHEN B, XUN X. Radial basis function interpolation in moving mesh technique[J]. Chinese Journal of Computational Physics 2012, 29(2):191-197(in Chinese).
[32] RENDALL T C S, ALLEN C B. Efficient mesh motion usi-ng radial basis functions with data reduction algorithms[J]. Journal of Computational Physics, 2009, 228(5):6231-6249.
[33] LIU Y, WANG L, QIAN Z S. Numerical investigation on the assistant restarting method of variable geometry for high Mach number inlet[J]. Aerospace Science and Technology, 2018,79:647-657.
[34] LENG Y, QIAN Z S. Sonic boom signature analysis for a type of hypersonic long-range civil vehicle:AIAA-2017-2244[R].Reston:AIAA,2017.
[35] XIANG X H, LIU Y, QIAN Z S. Investigation of a wide range adaptable hypersonic dual-waverider integrative design method based on two different types of 3D inward-turning inlets:AIAA-2017-2110[R].Reston:AIAA,2017.
[36] QIAN Z S, ZHANG J B, LEE C H. Preconditioned pseudo-compressibility methods for three-dimensional incompressible Navier-Stokes equations:AIAA-2016-3967[R].Reston:AIAA, 2016.
[37] LI H M, QIAN Z S. Implementation of three different transition methods and comparative analysis of the results computed by OVERSET software:AIAA-2016-3491[R]. Reston:AIAA, 2016.
[38] QIAN Z S, LEE C H. HLLC scheme for the preconditioned pseudo-compressibility Navier-Stokes equations for incompressible viscous flows[J]. International Journal of Computational Fluid Dynamics, 2015,29(6-8):400-410.
[39] XIANG X H, LIU Y, QIAN Z S. Aerodynamic design and numerical simulation of over-under turbine-based combined-cycle (TBCC) inlet mode transition[C]//Proceeding of 2014 Asia-Pacific International Symposium on Aerospace Technology, 2014.
[40] LI X F, QIAN Z S. Applications of overset grid technique to CFD simulation of high Mach number multi-body interaction/separation flow[C]//Proceeding of 2014 Asia-Pacific International Symposium on Aerospace Technology, 2014.
[41] QIAN Z S, ZHANG J B. Implicit preconditioned high-order compact scheme for the simulation of the three-dimensional incompressible Navier-Stokes equations with pseudo-compressibility method[J]. International Journal for Numerical Methods in Fluids,2012, 69(7):1165-1185.
[42] 2nd AIAA CFD drag prediction workshop[EB/OL].(2019-08-10)[2019-08-12].https://aiaa-dpw.larc.nasa.gov/Workshop2/
[43] HAN Z H, ZHANG Y, SONG C X, et al. Weighted gradient-enhanced Kriging for high-dimensional surrogate modelling and design optimization[J]. AIAA Journal, 2017, 55(12):4330-4346.
[44] HAN Z H, ABU-ZURAYK M, GÖRTZ S, et al. Surrogate-based, aerodynamic shape optimization of a wing-body transport aircraft configuration[M]. Berlin:Springer, 2018, 138:257-282.
[45] ZHANG Y, HAN Z H, ZHANG K S. Variable-fidelity expected improvement method for efficient global optimization of expensive functions[J]. Structural and Multidisciplinary Optimization, 2018, 58(4):1431-1451.
[46] 乔建领, 韩忠华, 宋文萍. 基于代理模型的高效全局低音爆优化设计方法[J]. 航空学报, 2018, 39(5):121736. QIAO J L, HAN Z H, SONG W P. An efficient surrogate-based global optimization for low sonic boom design[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5):121736(in Chinese).
[47] HAN Z H, CHEN J, ZHANG K S, et al. Aerodynamic shape optimization of natural-laminar-flow wing using surrogate-based approach[J]. AIAA Journal, 2018, 56(7):2579-2593.
文章导航

/