先进制造技术与装备专栏

螺旋铣孔技术研究进展

  • 杨国林 ,
  • 董志刚 ,
  • 康仁科 ,
  • 鲍岩 ,
  • 郭东明
展开
  • 大连理工大学 机械工程学院, 大连 116024

收稿日期: 2019-07-23

  修回日期: 2019-08-13

  网络出版日期: 2019-10-17

Research progress of helical milling technology

  • YANG Guolin ,
  • DONG Zhigang ,
  • KANG Renke ,
  • BAO Yan ,
  • GUO Dongming
Expand
  • School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China

Received date: 2019-07-23

  Revised date: 2019-08-13

  Online published: 2019-10-17

摘要

各种连接孔的加工是航空航天构件装配中的重要工作之一。新型大型飞机等难加工材料使用越来越多、制孔孔径深度越来越大、制孔精度质量要求越来越高,使得制孔加工变得越发困难,传统制孔方法逐渐不能满足需求。螺旋铣孔是一种针对航空航天构件装配制孔需求出现的新技术,其采用特制刀具通过偏心铣削的方式实现圆孔加工。由于材料去除原理改变,螺旋铣孔相对传统制孔方法在加工精度、生产效率、刀具成本、适用性等多个方面表现出优势,成为当前航空航天领域制孔技术的研究热点之一。首先在阐述螺旋铣孔基本原理的基础上分析了其技术优势;然后重点围绕加工机理与专用装备两个方面,概述了螺旋铣孔技术的发展现状;最后,分析了螺旋铣孔技术的发展趋势。

本文引用格式

杨国林 , 董志刚 , 康仁科 , 鲍岩 , 郭东明 . 螺旋铣孔技术研究进展[J]. 航空学报, 2020 , 41(7) : 623311 -623311 . DOI: 10.7527/S1000-6893.2019.23311

Abstract

Drilling all kinds of connecting holes is one of the major process in aircraft assembly. Because difficult-to-cut materials are using more and more and hole diameter is becoming bigger and bigger in the new large aircraft, hole-making is more difficult to carry out, as a result, conventional drilling process is failing to meet the requirement gradually. Helical milling is a new hole-making process for aircraft assembly, in which the cutting tool rotates on a helical path and generates the borehole. Due to the changed cutting principle, helical milling has more advantages compared with conventional drilling process, such as high quality, high efficiency, low tool cost and wide applicability. For these reasons, helical milling becomes one of the research focuses currently. Firstly, the fundamental and advantages of helical milling are expounded. Secondly, the research status of helical milling is summarized from the machining mechanism and special equipment. Finally, the development trend of helical milling for aircraft assembly is analyzed.

参考文献

[1] 范玉青, 梅中义, 陶剑. 大型飞机数字化制造工程[M]. 北京:航空工业出版社, 2011:26-35. FAN Y Q, MEI Z Y, TAO J. Digital manufacturing engineering of large aircraft[M]. Beijing:Aviation Industry Press, 2011:26-35(in Chinese).
[2] 王黎明, 冯潼能. 数字化自动钻铆技术在飞机制造中的应用[J]. 航空制造技术, 2008(11):42-45. WANG L M, FENG T N. Application of digital automatic drill-riveting technology in aircraft manufacture[J]. Aeronautical Manufacturing Technology, 2008(11):42-45(in Chinese).
[3] 康仁科, 杨国林, 董志刚, 等. 飞机装配中的先进制孔技术与装备[J]. 航空制造技术, 2016, 59(10):16-24. KANG R K, YANG G L, DONG Z G, et al. Advanced hold machining technology and equipment for aircraft assembly[J]. Aeronautical Manufacturing Technology, 2016, 59(10):16-24(in Chinese).
[4] 王欢. 钛合金螺旋铣孔试验研究[D]. 大连:大连理工大学, 2015. WANG H. Experimental study on helical milling of titanium alloy[D]. Dalian:Dalian University of Technology, 2015(in Chinese).
[5] WHINNEM E. Development and deployment of orbital drilling at Boeing:2006-01-3152[R]. SAE Transactions, 2006.
[6] WHINNEM E, LIPCZYNSKI G, ERIKSSON I. Development of orbital drilling for the Boeing 787[J]. SAE International Journal of Aerospace, 2008, 1:811-816.
[7] PEREIRA R B D, BRANDÃO L C, PAIVA A P D, et al. A review of helical milling process[J]. International Journal of Machine Tools and Manufacture, 2017, 120:27-48.
[8] 秦旭达, 陈仕茂, 刘伟成, 等. 螺旋铣孔技术在航空制造装配业中的发展应用[J]. 航空制造技术, 2009(6):58-60. QIN X D, CHEN S M, LIU W C, et al. Development and application of hole helical milling technology in aviation manufacturing assembly industry[J]. Aeronautical Manufacturing Technology, 2009(6):58-60(in Chinese).
[9] 李忠群, 郑敏, 王鑫. 螺旋铣孔技术研究进展[J]. 湖南工业大学学报, 2013, 27(1):38-42. LI Z Q, ZHENG M, WANG X. Research progress of helical milling technology[J]. Journal of Hunan University of Technology, 2013, 27(1):38-42(in Chinese).
[10] 谢海龙. C/E复合材料螺旋铣孔技术研究[D]. 大连:大连理工大学, 2016. XIE H L. The Research of helical milling of C/E composites[D]. Dalian:Dalian University of Technology, 2016(in Chinese).
[11] DENKENA B, BOEHNKE D, DEGE J H. Helical milling of CFRP-titanium layer compounds[J]. CIRP Journal of Manufacturing Science and Technology, 2008, 1(2):64-69.
[12] BRINKSMEIER E, FANGMANN S, MEYER I. Orbital drilling kinematics[J]. Production Engineering, 2008, 2(3):277-283.
[13] BRINKSMEIER E, FANGMANN S, RENTSCH R. Drilling of composites and resulting surface integrity[J]. CIRP Annals-Manufacturing Technology, 2011, 60(1):57-60.
[14] VOSS R, HENERICHS M, KUSTER F. Comparison of conventional drilling and orbital drilling in machining carbon fibre reinforced plastics (CFRP)[J]. CIRP Annals-Manufacturing Technology, 2016, 65(1):137-140.
[15] REY P A, LEDREF J, SENATORE J, et al. Modelling of cutting forces in orbital drilling of titanium alloy Ti-6Al-4V[J]. International Journal of Machine Tools and Manufacture, 2016, 106:75-88.
[16] WANG H Y, QIN X D. A mechanistic model for cutting force in helical milling of carbon fiber-reinforced polymers[J]. The International Journal of Advanced Manufacturing Technology, 2016, 82(9-12):1485-1494.
[17] 许君. C/E复合材料螺旋铣孔加工试验研究[D]. 大连:大连理工大学, 2017. XU J. The research on helical milling experiments of C/E composites[D]. Dalian:Dalian University of Technology, 2017(in Chinese).
[18] OZTURK O M, KILIC Z M, ALTINTAS Y. Mechanics and dynamics of orbital drilling operations[J]. International Journal of Machine Tools and Manufacture, 2018, 129:37-47.
[19] LI Z Q, LIU Q, MING X, et al. Cutting force prediction and analytical solution of regenerative chatter stability for helical milling operation[J]. The International Journal of Advanced Manufacturing Technology, 2014, 73(1-4):433-442.
[20] LI Z L, DING Y, ZHU L M. Accurate cutting force prediction of helical milling operations considering the cutter runout effect[J]. International Journal of Advanced Manufacturing Technology, 2017, 92:4133-4144.
[21] ZHOU L, DONG H Y, KE Y L, et al. Modeling of non-linear cutting forces for dry orbital drilling process based on undeformed chip geometry[J]. The International Journal of Advanced Manufacturing Technology, 2017, 94:203-216.
[22] LIU J, CHEN G, JI C H, et al. An investigation of workpiece temperature variation of helical milling for carbon fiber reinforced plastics (CFRP)[J]. International Journal of Machine Tools and Manufacture, 2014, 86:89-103.
[23] LIU J, REN C Z, QIN X D, et al. Prediction of heat transfer process in helical milling[J]. The International Journal of Advanced Manufacturing Technology, 2014, 72(5-8):693-705.
[24] 刘婕. CFRP/钛合金叠层材料螺旋铣孔切削热分析与温度预测[D]. 天津:天津大学, 2014. LIU J. Study on cutting heat and temperature prediction in helical milling for CFRP/Titanium[D]. Tianjin:Tianjin University, 2014(in Chinese).
[25] ZHOU L, KE Y L, DONG H Y, et al. Hole diameter variation and roundness in dry orbital drilling of CFRP/Ti stacks[J]. The International Journal of Advanced Manufacturing Technology, 2016, 87:811-824.
[26] 李士鹏, 田利成, 秦旭达, 等. 基于螺旋铣孔柔性切削力建模的孔径误差补偿[J]. 天津大学学报(自然科学与工程技术版), 2017,50(2):147-153. LI S P, TIAN L C, QIN X D, et al. Diameter error compensation based on flexible cutting force model in hole helical milling process[J]. Journal of Tianjin University (Science and Technology), 2017, 50(2):147-153(in Chinese).
[27] 潘泽民. CFRP/Ti复合结构螺旋铣孔自动控制技术研究[D]. 杭州:浙江大学, 2016. PAN Z M. Study on automatic control technology of helical milling on CFRP/Ti composite structures[D]. Hangzhou:Zhejiang University, 2016(in Chinese).
[28] SAADATBAKHSH M H, IMANI H, SADEGHI M H, et al. Experimental study of surface roughness and geometrical and dimensional tolerances in helical milling of AISI 4340 alloy steel[J]. The International Journal of Advanced Manufacturing Technology, 2017, 93:4063-4074.
[29] BRINKSMEIER E, FANGMANN S. Burr and cap formation by orbital drilling of aluminum[J]. Burrs-Analysis, Control and Removal, 2009, 58(2):519-542.
[30] LI S P, QIN X D, JIN Y, et al. A comparative study of hole-making performance by coated and uncoated WC/Co cutters in helical milling of Ti/CFRP stacks[J]. The International Journal of Advanced Manufacturing Technology, 2017, 94:2645-2658.
[31] SADEK A, MESHREKI M, ATTIA M H. Characterization and optimization of orbital drilling of woven carbon fiber reinforced epoxy laminates[J]. CIRP Annals-Manufacturing Technology, 2012,61(1):123-126.
[32] 王奔, 高航, 毕铭智, 等. C/E复合材料螺旋铣削制孔方法抑制缺陷产生的机理[J]. 机械工程学报, 2012, 48(15):173-181. WANG B, GAO H, BI M Z, et al. Mechanism of reduction of damage during orbital drilling of C/E composites[J]. Journal of Mechanical Engineering, 2012,48(15):173-181(in Chinese).
[33] WANG G D, KIRWA M S, LI N. Experimental studies on a two-step technique to reduce delamination damage during milling of large diameter holes in CFRP/Al stack[J]. Composite Structures, 2018, 188:330-339.
[34] WANG G D, MELLY S K, LI N, et al. Research on milling strategies to reduce delamination damage during machining of holes in CFRP/Ti stack[J]. Composite Structures, 2018, 200:679-688.
[35] QIN X D, GUI L J, LI H, et al. Feasibility study on the minimum quantity lubrication in high-speed helical milling of Ti-6Al-4V[J]. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 2012, 6(7):1222-1233.
[36] GEIER N, SZALAY T. Optimisation of process parameters for the orbital and conventional drilling of uni-directional carbon fibre-reinforced polymers (UD-CFRP)[J]. Measurement, 2017, 110:319-334.
[37] LI Z, LIU Q. Surface topography and roughness in hole-making by helical milling[J]. The International Journal of Advanced Manufacturing Technology, 2013, 66(9-12):1415-1425.
[38] PAULSEN T, PECAT O, BRINKSMEIER E. Influence of different machining conditions on the subsurface properties of drilled TiAl6V4[J]. Procedia CIRP, 2016, 46:472-475.
[39] 江跃东, 何改云, 秦旭达, 等. TC4钛合金螺旋铣孔工艺孔壁表面完整性研究[J]. 机械科学与技术, 2015, 34(10):1521-1525. JIANG Y D, HE G Y, QIN X D. et al. Study on surface integrity of hole in helical milling process of TC4 titanium alloy[J]. Mechanical Science and Technology for Aerospace Engineering, 2015, 34(10):1521-1525(in Chinese).
[40] RASTI A, SADEGHI M H, FARSHI S S. An investigation into the effect of surface integrity on the fatigue failure of AISI 4340 steel in different drilling strategies[J]. Engineering Failure Analysis, 2019, 95:66-81.
[41] PEREIRA R B D, LEITE R R, ALVIM A C, et al. Multi-objective robust optimization of the sustainable helical milling process of the aluminum alloy Al 7075 using the augmented-enhanced normalized normal constraint method[J]. Journal of Cleaner Production, 2017, 152:474-496.
[42] PEREIRA R B D, LEITE R R, ALVIM A C, et al. Multivariate robust modeling and optimization of cutting forces of the helical milling process of the aluminum alloy Al 7075[J]. The International Journal of Advanced Manufacturing Technology, 2018, 95:2691-2715.
[43] PEREIRA R B D, SILVA L A, LAURO C H, et al. Multi-objective robust design of helical milling hole quality on AISI H13 hardened steel by normalized normal constraint coupled with robust parameter design[J]. Applied Soft Computing Journal, 2019, 75:652-685.
[44] RODRIGUES V F S, FERREIRA J R, PAIVA A P, et al. Robust modeling and optimization of borehole enlarging by helical milling of aluminum alloy Al7075[J]. The International Journal of Advanced Manufacturing Technology, 2019, 100:2583-2599.
[45] 陆翠. CFRP/Ti-6Al-4V叠层结构螺旋铣孔过程工艺优化研究[D]. 天津:天津大学, 2012. LU C. The optimization research on helical milling of CFRP/Ti-6Al-4V stacks[D]. Tianjin:Tianjin University, 2012(in Chinese).
[46] 孙晓太. CFRP/钛合金螺旋铣孔专用刀具优化与试验研究[D]. 天津:天津大学, 2012. SUN X T. Optimization and experimental research of helical milling special tool for CFRP/titanium alloy[D]. Tianjin:Tianjin University, 2012(in Chinese).
[47] LI H, HE G Y, QIN X D, et al. Tool wear and hole quality investigation in dry helical milling of Ti-6Al-4V alloy[J]. The International Journal of Advanced Manufacturing Technology, 2014, 71(5-8):1511-1523.
[48] WANG H Y, QIN X D, LI H, et al. A comparative study on helical milling of CFRP/Ti stacks and its individual layers[J]. The International Journal of Advanced Manufacturing Technology, 2016, 86:1973-1983.
[49] 刘刚, 王亚飞, 张恒, 等. 基于分屑原理的螺旋铣孔专用刀具研究[J]. 机械工程学报, 2014, 50(9):176-184. LIU G, WANG Y F, ZHANG H, et al. Research on helical milling specialized tool based on chip-splitting principle[J]. Journal of Mechanical Engineering, 2014, 50(9):176-184(in Chinese).
[50] ZHOU L, DONG H Y, KE Y L, et al. Analysis of the chip-splitting performance of a dedicated cutting tool in dry orbital drilling process[J]. International Journal of Advanced Manufacturing Technology, 2016, 90(5-8):1809-1823.
[51] TANAKA H, OHTA K, TAKIZAWA R, et al. Experimental study on tilted planetary motion drilling for CFRP[J]. Procedia CIRP, 2012, 1:443-448.
[52] WANG Q, WU Y, BITOU T, et al. Proposal of a tilted helical milling technique for high quality hole drilling of CFRP:Kinetic analysis of hole formation and material removal[J]. The International Journal of Advanced Manufacturing Technology, 2018, 94(9-12):4221-4235.
[53] FUKUSHIMA K, TANAKA H. Development of inclined planetary milling machine with automatic tool axis inclination instrument[J]. Procedia CIRP, 2018, 77:50-53.
[54] 董志刚, 康仁科, 朱祥龙, 等. 一种超声螺旋铣孔装置及加工方法:CN201610532267.4[P]. 2016-11-09. DONG Z G, KANG R K, ZHU X L, et al. The invention relates to an ultrasonic helical milling device and a processing method:China. CN201610532267.4[P]. 2016-11-09(in Chinese).
[55] 王佩闯. 超声纵扭复合振动铣孔装置的研究[D]. 哈尔滨:哈尔滨工业大学, 2014. WANG P C. Research on devices in ultrasonic longitudinal-torsional vibration helical milling[D]. Harbin:Harbin Institute of Technology, 2014(in Chinese).
[56] CHEN G, REN C Z, ZOU Y H. et al. Mechanism for material removal in ultrasonic vibration helical milling of Ti-6Al-4V alloy[J]. International Journal of Machine Tools and Manufacture, 2019, 138:1-13.
[57] SULTANA I, SHI Z, ATTIA H, et al. A new hybrid oscillatory orbital process for drilling of composites using superabrasive diamond tools[J]. CIRP Annals-Manufacturing Technology, 2016, 65(1):141-144.
[58] SULTANA I, SHI Z, ATTIA H, et al. Surface integrity of holes machined by orbital drilling of composites with single layer diamond tools[J]. Procedia CIRP, 2016, 45:23-26.
[59] EGUTI C C A, TRABASSO L G. Design of a robotic orbital driller for assembling aircraft structures[J]. Mechatronics, 2014, 24(5):533-545.
[60] 张云志, 刘华东, 邹方, 等. 螺旋轨迹制孔技术在航空制造中的应用[J]. 航空制造技术, 2013, 442(22):34-39. ZHANG Y Z, LIU H D, ZOU F, et al. Application of spiral trajectory drilling technology on aviation manufacturing[J]. Aeronautical Manufacturing Technology, 2013,442(22):34-39(in Chinese).
[61] LIU H, ZHU W D, DONG H Y, et al. A helical milling and oval countersinking end-effector for aircraft assembly[J]. Mechatronics, 2017, 46:101-114.
[62] 王琦. 螺旋铣孔样机设计和试验研究[D]. 天津:天津大学, 2012. WANG Q. Design and experimental research of helical milling prototype[D]. Tianjin:Tianjin University, 2012(in Chinese).
[63] 单以才, 李亮, 何宁, 等. 飞机壁板柔性装配螺旋铣孔单元的研制[J]. 工具技术, 2012, 46(10):129-135. SHAN Y C, LI L, HE N, et al. Development of helical milling unit for airplane panel flexible assembly[J]. Machinery Design & Manufacture, 2012, 46(10):129-135(in Chinese).
[64] 单以才. 航空叠层构件材料螺旋铣孔工艺基础研究[D]. 南京:南京航空航天大学. 2014. SHAN Y C. Fundamental research on the helical milling process of holes for aero laminated structure materials[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2014(in Chinese).
[65] YAGISHITA H, OSAWA J. Hole making machine based on double eccentric mechanism for CFRP/TiAl6V4 stacks[J]. Procedia Manufacturing, 2015, 1:747-755.
[66] YAGISHITA H, OSAWA J. Highly accurate hole making technology of Ti6Al4V by orbital drilling:effect of oil mist[J]. Procedia Manufacturing, 2016, 5:195-204.
[67] 张云志, 刘华东, 刘建东, 等. 便携式螺旋轨迹制孔装置的研制[J]. 航空制造技术, 2018, 61(13):47-53. ZHANG Y Z, LIU H D, LIU J D, et al. Development of portable spiral trajectory drilling device[J]. Aeronautical Manufacturing Technology,2018, 61(13):47-53(in Chinese).
文章导航

/