采用梯度方法对某型4.5级压气机最后级进行气动设计优化研究,梯度由连续伴随方法计算确定,多排伴随方程采用伴随掺混面模型进行数值求解。首先,采用基于经验修正的初步设计方法设计带进口导叶的4.5级低速、低压缩比压气机的原始气动外形。之后,在压气机近失速工况对最后级静子叶片进行伴随气动设计优化,通过优化叶型和安装角降低流动损失,目标函数定义为加权求和形式的熵增和流量偏差,优化中对流量进行约束。最后,开展基于伴随方法的多工况气动设计优化研究,改善两个不同转速条件下最后级的气动性能。优化结果表明,基于伴随方法的多排气动设计优化可以通过改变叶片气动外形提升多排全工况气动性能。
The paper presents an aerodynamic shape optimization of the last stage of a 4.5-stage com-pressor by a gradient-based optimization method that adopts the continuous adjoint approach. An adjoint mixing-plane formulation is used to compute the adjoint solutions for multi-stage turbomachines. Firstly, a conventional preliminary design method with empirical correlations are used to produce a base design of a 4.5-stage low-speed and low compression ratio compressor with an inlet guide vane. Then the last stage is redesigned by the adjoint method to reduce the flow losses at the operation condition near stall through modifying the aerodynamic shape and stagger angle of the stator blade. The cost function is defined as a weighted sum of entropy production and the deviation from a given mass flow rate, enforcing the constraint on mass flow rate. Finally, a multi-point design optimization approach by using the adjoint method is employed to improve the performance of the last stage at two different operation conditions. The optimization show that the adjoint-based multi-stage design can improve the aerodynamic performance of a multi-stage compressor by profile modifications.
[1] OYAMA A, LIOU M, OBAYASHI S. Transonic axial-flow blade shape optimization using evolutionary algorithm and three-dimensional Navier-Stokes solver[J]. Journal of Propulsion and Power, 2004, 20(4):302-310.
[2] BENINI E. Three-dimensional multi-objective design optimization of a transonic compressor rotor[J]. Journal of Propulsion and Power, 2004, 20(3):559-565.
[3] LIAN Y, LIOU M. Multi-objective optimization of transonic compressor blade using evolutionary algorithm[J]. Journal of Propulsion and Power, 2005, 21(6):979-987.
[4] SAMAD A, KIM K, GOEL T, et al. Multi-objective optimization of transonic compressor blade using evolutionary algorithm[J]. Journal of Propulsion and Power, 2008, 24(2):302-310.
[5] JAMESON A. Aerodynamic design via control theory[J]. Journal of Scientific Computing, 1988, 3(3):233-260.
[6] JAMESON A. Optimum aerodynamic design using CFD and control theory:AIAA-1995-1729[R]. Reston:AIAA, 1995.
[7] REUTHER J, JAMESON A. Aerodynamic shape optimization of wing and wing-body configurations using control theory:AIAA-1995-0123[R]. Reston:AIAA, 1995.
[8] KIM S, ALONSO J J, JAMESON A. Two-dimensional high-lift aerodynamic optimization using the continuous adjoint method:AIAA-2000-4741[R]. Reston:AIAA, 2000.
[9] KIM S, ALONSO J J, JAMESON A. Multi-element high-lift configuration design optimization using viscous continuous adjoint method[J]. Journal of Aircraft, 2004, 41(5):1082-1098.
[10] YANG S, WU H Y, LIU F, et al. Aerodynamic design of cascades by using an adjoint equation method:AIAA-2003-1068[R]. Reston:AIAA, 2000.
[11] WU H Y, LIU F, TSAI H. Aerodynamic design of turbine blades using an adjoint equation method:AIAA-2005-1006[R]. Reston:AIAA, 2005.
[12] LI H, SONG L, LI Y, et al. 2D viscous aerodynamic shape design optimization for turbine blades based on adjoint method[J]. Journal of Turbomachinery, 2011, 133(1):031014.
[13] WANG D, HE L. Adjoint aerodynamic design optimization for blades in multistage turbomachines Part I:Methodology and verification[J]. Journal of Turbomachinery, 2010, 132(2):021011.
[14] WANG D, HE L. Adjoint aerodynamic design optimization for blades in multistage turbomachines-Part II:Validation and applications[J]. Journal of Turbomachinery, 2010, 132(2):021012.
[15] LUO J, XIONG J, LIU F, et al. Three-dimensional aerodynamic design optimization of a turbine blades by using an adjoint method[J]. Journal of Turbomachinery, 2011, 133(1):011026.
[16] WALTHER B, NADARAJAH S. Constrained adjoint-based aerodynamic shape optimization of a single-stage transonic compressor[J]. Journal of Turbomachinery, 2013, 135(3):021017.
[17] LUO J, ZHOU C, LIU F. Multipoint design optimization of a transonic compressor blade by using an adjoint met-hod[J]. Journal of Turbomachinery, 2014, 136(5):051005.
[18] LUO J, LIU F. Multi-objective optimization of a transonic compressor blade by using an adjoint method[J]. AIAA Journal, 2015, 53(3):797-801.
[19] LUO J, LIU F, MCBEAN I. Turbine blade row optimization through endwall contouring by an adjoint method[J]. Journal of Propulsion and Power, 2015, 31(2):505-518.
[20] WALTHER B, NADARAJAH S. Optimum shape design for multirow turbomachinery configurations using a discrete adjoint approach and an efficient radial basis function deformation scheme for complex multiblock grids[J]. Journal of Turbomachinery, 2015, 137(3):081006.
[21] CUMPSTY N A. Compressor aerodynamics[M]. London:Longman Scientific & Technical, 1989:47-61.
[22] LIU F, JAMESON A. Multigrid Navier-Stokes calculations for three-dimensional cascades[J]. AIAA Journal, 1993, 31(10):1785-1791.
[23] ZHENG X, LIU F. Staggered upwind method for solving Navier-Stokes and k-ω turbulence model equations[J]. AIAA Journal, 1995, 33(6):991-998.
[24] LIU F, ZHENG X. A strongly-coupled time-marching method for solving the Navier-Stokes and k-ω turbulence model equations with multigrid[J]. Journal of Computational Physics, 1996, 128(2):289-300.
[25] SPALART P R, ALLMARAS S R. A one-equation turbulence model for aerodynamic flow:AIAA-1992-0439[R]. Reston:AIAA, 1992.
[26] DENTON J D. The calculation of three-dimensional viscous flow through multistage turbomachines[J]. Journal of Turbomachinery, 1992, 114(1):18-26.
[27] GILES M. Nonreflecting boundary conditions for Euler equation calculations[J]. AIAA Journal, 1990, 28(12):2050-2058.
[28] HICKS R M, HENNE P A. Wing design by numerical optimization[J]. Journal of Aircraft, 1978, 15(7):407-412.
[29] GILES M, PIERCE N. An introduction to the adjoint approach to design[J]. Flow, Turbulence and Combustion, 2000, 65(10):393-415.
[30] ZYMARIS A, PAPADIMITRIOU D, GIANNAKOGLOU K, et al. Continuous adjoint approach to the Spalart-Allmaras turbulence model for incompressible flows[J]. Computers & Fluids, 2009, 38(8):1528-1538.
[31] LUO J, ZHU Y, TANG X, et al. Flow reconstruction and aerodynamic shape optimization of turbomachinery blades by POD-based hybrid models[J]. Science China Technological Sciences, 2017, 60(11):1658-1673.