固体力学与飞行器总体设计

高速热流下薄壁结构声振响应分析及寿命预估

  • 沙云东 ,
  • 艾思泽 ,
  • 赵奉同 ,
  • 姜卓群 ,
  • 张家铭
展开
  • 沈阳航空航天大学 辽宁省航空推进系统先进测试技术重点实验室, 沈阳 110136

收稿日期: 2019-08-02

  修回日期: 2019-09-09

  网络出版日期: 2019-10-10

基金资助

航空科学基金(20151554002)

Vibro-acoustic response analysis and fatigue life prediction of thin-walled structures with high speed heat flux

  • SHA Yundong ,
  • AI Size ,
  • ZHAO Fengtong ,
  • JIANG Zhuoqun ,
  • ZHANG Jiaming
Expand
  • Liaoning Province Key Laboratory of Advanced Measurement and Test Technology of Aviation Propulsion Systems, Shenyang Aerospace University, Shenyang 110136, China

Received date: 2019-08-02

  Revised date: 2019-09-09

  Online published: 2019-10-10

Supported by

Aeronautical Science Foundation of China (20151554002)

摘要

现代飞行器飞行过程中发动机薄壁结构受高速热流冲击面临着极为严酷的工作环境,使结构产生大挠度动力学响应以及疲劳损伤破坏现象。为获取难以实测的热流冲击下结构声振响应规律及疲劳破坏时间,采用耦合有限元/边界元的方法进行数值模拟分析与热声疲劳试验相结合的方法,根据载荷效果构建与试验件尺寸完全一致的数值仿真模型,对热声载荷下薄壁结构进行仿真计算。采用功率谱密度(PSD)法分析频率响应峰值随声载荷变化规律,并通过改进的雨流计数法对声振响应数据进行统计分析,得到疲劳寿命时间。并对比声振响应仿真计算结果与试验结果发现误差小于2%,验证了数值仿真的可靠性。在此基础上,对高速热流冲击作用下薄壁结构进行数值仿真分析,通过分析频率响应峰值随温度和流速的变化规律获取不同温度各流速下结构声振响应及疲劳寿命变化规律,并阐述造成这种变化的原因。本文完成的工作可对高速热流环境下薄壁结构响应分析和寿命预估提供参考依据。

本文引用格式

沙云东 , 艾思泽 , 赵奉同 , 姜卓群 , 张家铭 . 高速热流下薄壁结构声振响应分析及寿命预估[J]. 航空学报, 2020 , 41(2) : 223327 -223327 . DOI: 10.7527/S1000-6893.2019.23327

Abstract

When the modern aircraft flies, the thin-walled structure of the engine will be exposed to an extremely high-temperature environment, leading to the dynamic response of large deflection and fatigue damage. In order to obtain the structural dynamic responses of the structure in the high speed heat flux and the time of fatigue damage, which are generally difficult to measure, this paper adopts the method of coupled FEM/BEM for numerically simulate analysis and thermo-acoustic fatigue test. A numerical simulation model that is exactly of the same size as the test piece is constructed according to the load effect, and the thin wall structure under the thermo-acoustic load is simulated and calculated. The Power Spectral Density (PSD) method is used to analyze the peak frequency response to acoustic load variation, and the improved rain-flow counting method is used to analyze statistically the vibro-acoustic response data. The fatigue life time of the structure is then obtained. A comparison of the simulation results of acoustic response with the experimental results shows that the error is less than 2%, which verifies the reliability of the numerical simulation. A numerical simulation analysis of the thin-walled structure under the impact of high speed heat flux is carried out. The variation rules of stress response and life of the structure with temperature and flow velocity are summarized, and the reasons for the variation are expounded. The work completed in this paper can provide an important basis for response analysis and life prediction of thin-walled structures in high speed heat flux environment.

参考文献

[1] LEE J. Large-amplitude plate vibration in an elevated thermal environment:WL-TR-92-3049[R].Washington,D.C.:NASA;1992.
[2] LEE J. Displacement and strain statistics of thermally buckled plates[C]//40th Structures, Structural Dynamics, and Materials Conference and Exhibit. Reston, VA:AIAA, 1999.
[3] MEI C, CHEN R R. Finite element nonlinear random response of composite panels of arbitrary shape to acoustic and thermal loads:WL-TR-1997-3085[R]. Washington,D.C.:NASA;1997.
[4] DHAINAUT J M, MEI C, SPOTTSWOOD S M, et al. Sonic fatigue design and nonlinear panel response to flight nonwhite pressure fluctuations:AIAA-2002-1635[R].Reston,VA:AIAA;2002.
[5] DHAINAUT J M, GUO X, MEI C,et al. Nonlinear random response of panels in an elevated thermal-acoustic environment[J]. Journal of Aircraft,2003, 40(4):683-691.
[6] SCHNEIDER C W. Acoustic fatigue of aircraft structures at elevated temperatures[C]//Aeroacoustics Conference, 1973.
[7] MAEKAWA S. On the sonic fatigue life estimation of skin structures at room and elevated temperatures[J]. Journal of Sound and Vibration, 1982, 80(1):41-59.
[8] PRZEKOP A, RIZZE S A, SWEITZER K A. An investigation of high-cycle fatigue models for metallic structures exhibiting snap-through response[J]. International Journal of Fatigue,2008, 30(9):1579-1598.
[9] NG C F,CLEVENSON S A. High-intensity acoustic tests of athermally stressed plate[J]. Journal of Aircraft,1991,28(4):275-281.
[10] JACOBS J H,GRUENSFELDE R C,HEDGECOCK C E. Thermal-acoustic fatigue of ceramic matrix composite materials[C]//AIAA/ASME/ASCE/AHS/ASC 34th Structures, Structural Dynamics, and Materials Conference.Reston,VA:AIAA;1993.
[11] 杨雄伟,李跃明,耿谦. 基于混合FE-SEA法高温环境飞行器宽频声振特性分析[J]. 航空学报,2011,32(11):1851-1859. YANG X W, LI Y M, GENG Q. Broadband vibro-acoustic response of aircraft in high temperature environment based on hybrid FE-SEA[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(11):1851-1859(in Chinese).
[12] 桂业伟,刘磊,代光月,等. 高超声速飞行器流-热-固耦合研究现状与软件开发[J].航空学报,2017,38(7):020844. GUI Y W, LIU L, DAI G Y, et al. Research status of hypersonic vehicle fluid-thermal-solid coupling and software development[J]. Acta Aeronautica et Astronautica Sinica, 2017,38(7):020844(in Chinese).
[13] 马艳红, 张大义, 洪杰,等. 气流激励下叶片的高周疲劳概率寿命预估[J]. 推进技术, 2009, 30(4):462-467. MA Y H, ZHANG D Y, HONG J, et al. Prediction on high cycle life of blades using probability method.[J].Journal of Propulsion Technology, 2009, 30(4):462-467(in Chinese).
[14] 洪志亮,赵国昌,杨明绥,等.航空发动机压气机内部流体诱发声共振研究进展[J].航空学报,2019,40(11):123139. HONG Z L, ZHAO G C, YANG M S, et al. An overview on flow induced acoustic resonance in aeroengine compressors[J]. Acta Aeronautica et Astronautica Sinica,2019,40(11):123139(in Chinese).
[15] 沙云东, 魏静, 高志军. 热声载荷作用下薄壁结构的非线性响应特性[J]. 航空学报, 2013, 34(6):1336-1346. SHA Y D, WEI J, GAO Z J. Nonlinear characteristics of thin-walled structures under thermo-acoustic loadings[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(6):1336-1346(in Chinese).
[16] 沙云东, 胡翼飞, 胡增辉. 薄壁结构高温随机振动疲劳分析方法有效性验证[J]. 推进技术, 2018,39(6):1386-1395. SHA Y D, HU Y F, HU Z H. Random vibration fatigue analysis method valid verification of thin-walled structure under high temperature environment[J]. Journal of Propulsion Technology, 2018, 39(6):1386-1395(in Chinese).
[17] SHA Y D, GAO Z J, XU F, et al. Influence of thermal loading on the dynamic response of thin-walled structure under thermo-acoustic loading[J]. Advanced Engineering Forum, 2011, 2(3):876-881.
[18] 沙云东, 郭小鹏, 张军. 基于应力概率密度和功率谱密度法的随机声疲劳寿命预估方法研究[J]. 振动与冲击, 2010, 29(1):162-165. SHA Y D, GUO X P, ZHANG J. Random sonic fatigue life prediction based on stress probability density and power spectral density method[J].Journal of Vibration and Shock,2010, 29(1):162-165(in Chinese).
[19] 沙云东,王建,赵奉同,等. 热声载荷下薄壁结构振动响应试验验证与疲劳分析[J]. 航空动力学报,2017, 32(11):2659-2671. SHA Y D, WANG J, ZHAO F T, et al. Vibration response experimental verification and fatigue analysis of thin-walled structures to thermal-acoustic loads[J]. Journal of Aerospace Power, 2017, 32(11):2659-2671(in Chinese).
[20] SHA Y D, WEI J, GAO Z J. Nonlinear response with snap-through and fatigue life prediction for panels to thermo-acoustic loadings[J]. Journal of Vibration and Control, 2014, 20(5):679-697.
[21] 诺顿M P. 工程噪声和振动分析基础[M].盛元生, 顾伟豪, 韩建民,等,译. 北京:航空工业出版社,1993. NORTON M P.Fundamentals of noise and vibration analysis for engineers[M].SHENG Y S,GU W H,HAN J M,et al,translated.Beijing:Aviation Industry Press,1993(in Chinese).
[22] 过玉卿, 龙靖宇. 改进雨流计数法及其统计处理程序[J]. 武汉科技大学学报(自然科学版),1987, 1:22-28. GUO Y Q, LONG J Y. Improved rain flow counting method and statistical processing program[J]. Journal of Wuhan University of Science and Technology (Natural Science edition),1987, 1:22-28(in Chinese).
文章导航

/