[1] ZHU X F, GUO Z, HOU Z X. Solar-powered airplanes:A historical perspective and future challenges[J]. Progress in Aerospace Sciences, 2014, 71:36-53.
[2] 苑轩. 我国首款大型太阳能无人机完成两万米高空飞行[J]. 中国航天, 2017 (7):33-33. YUAN X. Chinese first large-scale solar-powered UAV has completed a 20 000-meter high-altitude flight[J]. Aerospace China, 2017(7):33-33 (in Chinese).
[3] NASA. NASA Armstrong fact sheet:Pathfinder solar-powered aircraft[EB/OL]. (2017-08-07)[2019-09-20]. https://www.nasa.gov/centers/armstrong/news/FactSheets/FS-034-DFRC.html.
[4] NASA. NASA Armstrong fact sheet:Helios prototype[EB/OL]. (2017-08-07)[2019-09-20]. https://www.nasa.gov/centers/armstrong/news/FactSheets/FS-068-DFRC.html.
[5] 温杰. "西风"太阳能无人机的改进与发展[J]. 国际航空, 2017(10):22-24. WEN J. Improvement and development of "Zephyr" UAV[J]. International Aviation, 2017(10):22-24 (in Chinese).
[6] 搜狐网. 27.6小时! 西工大"魅影"团队突破自我 MY-12太阳能无人机再问鼎最长续航[EB/OL]. (2019-07-29)[2019-09-20]. http://www.sohu.com/a/330181618_714515. SOHU. 27.6 hours! MY-12 SUAV designed by "Meiying" Group in Northwestern Polytechnical University broke through the maximum endurance time in China again[EB/OL]. (2019-07-29)[2019-09-20]. http://www.sohu.com/a/330181618_714515 (in Chinese).
[7] 中华人民共和国国家国防科技工业局. "启明星"太阳能无人机大尺寸技术验证机完成首飞[EB/OL]. (2018-10-30)[2019-09-20]. http://www.sastind.gov.cn/n112/n117/c6803563/content.html. SASTIND, PRC. "QiMingXing" large-size technical demonstration SUAV has completed its maiden flight[EB/OL]. (2018-10-30)[2019-09-20]. http://www.sastind.gov.cn/n112/n117/c6803563/content.html (in Chinese).
[8] 中华人民共和国国家国防科技工业局. 航天科工飞云工程取得阶段性成果[EB/OL]. (2019-03-15)[2019-09-20]. http://www.sastind.gov.cn/n112/n117/c6805662/content.html. SASTIND, PRC. CASIC "FeiYun" Engineering has obtained partial results[EB/OL]. (2019-03-15)[2019-09-20]. http://www.sastind.gov.cn/n112/n117/c6805662/content.html (in Chinese).
[9] 新浪网. 中大型太阳能无人机"墨子II型"首飞成功[EB/OL]. (2019-07-31)[2019-09-20]. http://finance.sina.com.cn/roll/2019-07-31/doc-ihytcerm7468067.shtml. SINA. Middle-large size SUAV "MoZi II" made a successful maiden flight[EB/OL]. (2019-07-31)[2019-09-20]. http://finance.sina.com.cn/roll/2019-07-31/doc-ihytcerm7468067.html (in Chinese).
[10] HUANG Y, WANG H L, YAO P. Energy-optimal path planning for Solar-powered UAV with tracking moving ground target[J]. Aerospace Science and Technology, 2016, 53:241-251.
[11] HOSSEINI S, MESBAHI M. Energy-aware aerial surveillance for a long-endurance solar-powered unmanned aerial vehicles[J]. Journal of Guidance, Control, and Dynamics, 2016, 39(9):1980-1993.
[12] HUANG Y, WANG H L, LI N, et al. Endurance estimate for solar-powered unmanned aerial vehicles[C]//9th International Conference on Intelligent Human-Machine Systems and Cybernetics. Piscataway, NJ:IEEE Press, 2017:66-70.
[13] GAO X Z, HOU Z X, GUO Z, et al. Reviews of methods to extract and store energy for solar-powered aircraft[J]. Renewable and Sustainable Energy Reviews, 2015, 44:96-108.
[14] WU J F, WANG H L, HUANG Y, et al. Solar-powered aircraft endurance map[J]. Journal of Guidance, Control, and Dynamics, 2018, 42(3):687-694.
[15] WU J F, WANG H L, HUANG Y, et al. Energy management strategy for solar-powered UAV long-endurance target tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(4):1878-1891.
[16] LEE J S, YU K H. Optimal path planning of solar-powered UAV using gravitational potential energy[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(3):1442-1451.
[17] KIM S H, PADILLA G E G, KIM K J, et al. Flight path planning for a solar powered UAV in wind fields using direct collocation[J/OL]. (2019-07-03)[2019-07-26]. IEEE Transactions on Aerospace and Electronic Systems,https://doi.org/10.1109/TAES.2019.2926654.
[18] RAJENDRAN P, SMITH H. Implications of longitude and latitude on the size of solar-powered UAV[J]. Energy Conversion and Management, 2015, 98:107-114.
[19] OETTERSHAGEN P, MELZER A, MANTEL T, et al. Design of small hand-launched solar-powered UAVs:From concept study to a multi-day world endurance record flight[J]. Journal of Field Robotics, 2017, 34(7):1352-1377.
[20] 昌敏, 周洲, 王睿. 基于机翼-帆尾的高纬度跨年驻留太阳能飞机总体参数设计方法[J]. 航空学报, 2014, 35(6):1592-1603. CHANG M, ZHOU Z, WANG R. Primary parameters determination for year-round solar-powered aircraft of wing-sail type at higher latitudes[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(6):1592-1603 (in Chinese).
[21] 王科雷, 周洲, 甘文彪, 等. 太阳能无人机低雷诺数翼型气动特性研究[J]. 西北工业大学学报, 2014, 32(2):163-168. WANG K L, ZHOU Z, GAN W B, et al. Studying aerodynamic performances of the low-Reynolds-number airfoil of solar energy UAV[J]. Journal of Northwestern Polytechnical University, 2014, 32(2):163-168 (in Chinese).
[22] 王伟, 周洲, 祝小平, 等. 考虑几何非线性效应的大柔性太阳能无人机静气动弹性分析[J]. 西北工业大学学报, 2014, 32(4):499-504. WANG W, ZHOU Z, ZHU X P, et al. Static aeroelastic characteristics analysis of a very flexible solar powered UAV with geometrical nonlinear effect considered[J]. Journal of Northwestern Polytechnical University, 2014, 32(4):499-504 (in Chinese).
[23] WILSON C, NUTBEAN J, BOND I. Aerodynamic and structural design of a solar-powered micro unmanned air vehicle[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2000, 214(2):97-106.
[24] 昌敏, 周洲, 成柯, 等. 高空驻留太阳能飞机主动式光伏组件面功率特性研究[J]. 航空学报, 2013, 34(2):273-281. CHANG M, ZHOU Z, CHENG K, et al. Exploring the characteristics of power density of tracking PV modules for high-altitude stationary solar-powered airplanes[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(2):273-281 (in Chinese).
[25] FAZELPOUR F, VAFAEIPOUR M, RAHBARI O, et al. Considerable parameters of using PV cells for solar-powered aircrafts[J]. Renewable and Sustainable Energy Reviews, 2013, 22:81-91.
[26] 成珂, 王忠伟, 周洲. 太阳能飞机工作条件对太阳能电池性能的影响[J]. 西北工业大学学报, 2012, 30(4):535-540. CHEN K, WANG Z W, ZHOU Z. Exploring effects of solar-powered airplane operating conditions on solar cell performance[J]. Journal of Northwestern Polytechnical University, 2012, 30(4):535-540 (in Chinese).
[27] WU J F, WANG H L, LI N, et al. Distributed trajectory optimization for multiple solar-powered UAVs target tracking in urban environment by adaptive grasshopper optimization algorithm[J]. Aerospace Science and Technology, 2017, 70:497-510.
[28] WU J F, WANG H L, LI N, et al. Path planning for solar-powered UAV in urban environment[J]. Neurocomputing, 2018, 275:2055-2065.
[29] KLESH A T, KABAMBA P T. Solar-powered aircraft:Energy-optimal path planning and perpetual endurance[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(4):1320-1329.
[30] DAI R, LEE U, HOSSEINI S, et al. Optimal path planning for solar-powered UAVs based on unit quaternions[C]//2012 51st IEEE Conference on Decision and Control. Piscataway, NJ:IEEE Press, 2012:3104-3109.
[31] DAI R. Path planning of solar-powered unmanned aerial vehicles at low altitude[C]//2013 56th IEEE International Midwest Symposium on Circuits and Systems. Piscataway, NJ:IEEE Press, 2013:693-696.
[32] HOSSEINI S, DAI R, MESBAHI M. Optimal path planning and power allocation for a long endurance solar-powered UAV[C]//2013 American Control Conference. Piscataway, NJ:IEEE Press, 2013:2588-2593.
[33] SPANGELO S C, GILBERT E G. Power optimization of solar-powered aircraft with specified closed ground tracks[J]. Journal of Aircraft, 2012, 50(1):232-238.
[34] HUANG Y, CHEN J G, WANG H L, et al. A method of 3D path planning for solar-powered UAV with fixed target and solar tracking[J]. Aerospace Science and Technology, 2019, 92:831-838.
[35] SUN Y, XU D F, NG D W K, et al. Optimal 3D-trajectory design and resource allocation for solar-powered UAV communication systems[J]. IEEE Transactions on Communications, 2019, 67(6):4281-4298.
[36] ABBE G, SMITH H. Technological development trends in solar-powered aircraft systems[J]. Renewable and Sustainable Energy Reviews, 2016, 60:770-783.
[37] GAO X Z, HOU Z X, GUO Z, et al. Energy management strategy for solar-powered high-altitude long-endurance aircraft[J]. Energy Conversion and Management, 2013, 70:20-30.
[38] 马东立, 包文卓, 乔宇航. 基于重力储能的太阳能飞机飞行轨迹研究[J]. 航空学报, 2014, 35(2):408-416. MA D L, BAO W Z, QIAO Y H. Study of flight path for solar-powered aircraft based on gravity energy reservation[J]. Acta Aeronautica et Astronautica Sinica, 2013, 35(2):408-416 (in Chinese).
[39] GOSWAMI D Y. Principles of solar engineering[M]. 3rd ed. New York:CRC Press, 2015.
[40] GRENESTEDT J L, SPLETZER J R. Towards perpetual flight of a gliding unmanned aerial vehicle in the jet stream[C]//49th IEEE Conference on Decision and Control. Piscataway, NJ:IEEE Press, 2010:6343-6349.
[41] KNEIZYS F X, SHETTLE E P, ABREU L W, et al. Users guide to LOWTRAN 7[R]. Hanscom AFB, MA:Air Force Geophysics Lab, 1988.
[42] 王宏伦, 黄宇. 太阳能无人机能量生产估计模型及应用[J]. 战术导弹技术, 2017 (1):9-16. WANG H L, HUANG Y. An Integrated energy model of solar-powered unmanned aerial vehicles for predicting collected solar energy and application[J]. Tactical Missile Technology, 2017 (1):9-16 (in Chinese).
[43] BADESCU V, GUEYMARD C A, CHEVAL S, et al. Accuracy analysis for fifty-four clear-sky solar radiation models using routine hourly global irradiance measurements in Romania[J]. Renewable Energy, 2013, 55:85-103.
[44] ASHRAE. 2013 ASHRAE Handbook:Fundamentals (IP & SI)[M]. Atlanta, GA:ASHRAE, 2013.
[45] HOSSEINI S, MESBAHI M. Energy aware aerial surveillance for a long endurance solar-powered UAV[C]//AIAA Guidance, Navigation, and Control Conference. Reston, VA:AIAA, 2013:4552.
[46] WANG S Q, MA D L, YANG M Q, et al. Flight strategy optimization for high-altitude long-endurance solar-powered aircraft based on Gauss pseudo-spectral method[J]. Chinese Journal of Aeronautics, 2019, 32(10):2286-2298
[47] DURISCH W, URBAN J, SMESTAD G. Characterisation of solar cells and modules under actual operating conditions[J]. Renewable Energy, 1996, 8(1-4):359-366.
[48] MARDANPOUR P, HODGES D H. Passive morphing of flying wing aircraft:Z-shaped configuration[J]. Journal of Fluids and Structures, 2014, 44:17-30.
[49] WU M J, XIAO T H, ANG H S, et al. Optimal flight planning for a Z-shaped Morphing-wing solar-powered unmanned aerial vehicle[J]. Journal of Guidance, Control, and Dynamics, 2017, 41(2):497-505.
[50] WU M J, SHI Z W, XIAO T H, et al. Energy optimization and investigation for Z-shaped sun-tracking morphing-wing solar-powered UAV[J]. Aerospace Science and Technology, 2019, 91:1-11.
[51] WU M J, XIAO T H, ANG H S, et al. Investigation of a morphing wing solar-powered unmanned aircraft with enlarged flight latitude[J]. Journal of Aircraft, 2017, 54(5):1996-2004.
[52] 王刚, 胡峪, 宋笔锋, 等. 电动无人机动力系统优化设计及航时评估[J]. 航空动力学报, 2015, 30(8):1834-1840. WANG G, HU Y, SONG B F, et al. Optimal design and endurance estimation of propulsion system for electric-powered unmanned aerial vehicle[J]. Journal of Aerospace Power, 2015, 30(8):1834-1840 (in Chinese).
[53] TRAUB L W. Range and endurance estimates for battery-powered aircraft[J]. Journal of Aircraft, 2011, 48(2):703-707.
[54] ABDILLA A, RICHARDS A, BURROW S. Power and endurance modelling of battery-powered rotorcraft[C]//2015 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ:IEEE Press, 2015:675-680.
[55] AVANZINI G, GIULIETTI F. Maximum range for battery-powered aircraft[J]. Journal of Aircraft, 2012, 50(1):304-307.
[56] GATTI M, GIULIETTI F, TURCI M. Maximum endurance for battery-powered rotary-wing aircraft[J]. Aerospace Science and Technology, 2015, 45:174-179.
[57] SMETANA F O. Flight vehicle performance and aerodynamic control[M]. Reston, VA:AIAA, 2001.
[58] JR A E B, DESAI M N, HOFFMAN W C. Energy-state approximation in performance optimization of supersonicaircraft[J]. Journal of Aircraft, 1969, 6(6):481-488.
[59] 林海. 能量法及其试飞方法研究[J]. 飞行力学, 1993, 11(4):63-68. LIN H. The studies of energy method and its flight test method[J]. Flight Dynamics, 1993, 11(4):63-68 (in Chinese).
[60] MONTGOMERY S, MOURTOS N. Design of a 5 kilogram solar-powered unmanned airplane for perpetual solar endurance flight[C]//49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Reston, VA:AIAA, 2013:3875.
[61] BURTON M J, HOBURG W W. Solar-electric and gas powered, long-endurance UAV sizing via geometric programming[C]//18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston, VA:AIAA, 2017:4147.
[62] SACHS G, LENZ J, HOLZAPFEL F. Unlimited endurance performance of solar UAVs with minimal or zero electrical energy storage[C]//AIAA Guidance, Navigation, and Control Conference. Reston, VA:AIAA, 2009:6013.
[63] GAO X Z, HOU Z X, GUO Z, et al. Joint optimization of battery mass and flight trajectory for high-altitude solar-powered aircraft[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2014, 228(13):2439-2451.
[64] GAO X Z, HOU Z X, GUO Z, et al. The equivalence of gravitational potential and rechargeable battery for high-altitude long-endurance solar-powered aircraft on energy storage[J]. Energy Conversion and Management, 2013, 76:986-995.
[65] GAO X Z, HOU Z X, GUO Z, et al. Research on characteristics of gravitational gliding for high-altitude solar-powered unmanned aerial vehicles[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2013, 227(12):1911-1923.
[66] SHIN K, HWANG H, AHN J. Mission analysis of solar UAV for high-altitude long-endurance flight[J]. Journal of Aerospace Engineering, 2018, 31(3):04018010.
[67] 王少奇, 马东立, 杨穆清, 等. 高空太阳能无人机三维航迹优化[J]. 北京航空航天大学学报, 2019, 45(5):936-943. WANG S Q, MA D L, YANG M Q, et al. Three-dimensional optimal path planning for high-altitude solar-powered UAV[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(5):936-943 (in Chinese).
[68] MARTIN R A, GATES N S, NING A, et al. Dynamic optimization of high-altitude solar aircraft trajectories under station-keeping constraints[J]. Journal of Guidance, Control, and Dynamics, 2018, 42(3):538-552.
[69] GAO X Z, HOU Z X, GUO Z, et al. Energy extraction from wind shear:Reviews of dynamic soaring[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2015, 229(12):2336-2348.
[70] JONES D. Forever airborne[J]. Nature, 1994, 372(6502):136-136.
[71] ZHAO Y J. Optimal patterns of glider dynamic soaring[J]. Optimal Control Applications and Methods, 2004, 25(2):67-89.
[72] DEITTERT M, RICHARDS A, TOOMER C A, et al. Engineless unmanned aerial vehicle propulsion by dynamic soaring[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(5):1446-1457.
[73] LANGELAAN J W, ROY N. Enabling new missions for robotic aircraft[J]. Science, 2009, 326(5960):1642-1644.
[74] 朱炳杰, 侯中喜. 无人机风梯度滑翔过程中能量变化[J]. 国防科技大学学报, 2015, 37(1):78-83. ZHU B J, HOU Z X. Energy transformation in dynamic soaring of unmanned aerial vehicles[J]. Journal of National University of Defense Technology, 2015, 37(1):78-83 (in Chinese).
[75] 刘多能, 侯中喜, 郭正, 等. 动态滑翔运动建模, 机理分析与航迹优化[J]. 国防科技大学学报, 2016, 38(5):78-85. LIU D N, HOU Z X, GUO Z, et al. Motion modeling, mechanism analysis and trajectory optimization for dynamic soaring[J]. Journal of National University of Defense Technology, 2016, 38(5):78-85 (in Chinese).
[76] GAO X Z, HOU Z X, GUO Z, et al. The influence of wind shear to the performance of high-altitude solar-powered aircraft[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2014, 228(9):1562-1573.
[77] GAO X Z, HOU Z X, GUO Z, et al. Analysis and design of guidance-strategy for dynamic soaring with UAVs[J]. Control Engineering Practice, 2014, 32:218-226.
[78] WIRTH L, OETTERSHAGEN P, AMBüHL J, et al. Meteorological path planning using dynamic programming for a solar-powered UAV[C]//2015 IEEE Aerospace Conference. Piscataway, NJ:IEEE Press, 2015:1-11.
[79] 孙志远, 金光, 张刘, 等. 基于自适应高斯伪谱法的SGCMG无奇异框架角轨迹规划[J]. 宇航学报, 2012, 33(5):597-604. SUN Z Y, JIN G, ZHANG L, et al. SGCMG non-singularity trajectory programming algorithm based on adaptive Gauss pseudospectral method[J]. Journal of Astronautics, 2012, 33(5):597-604 (in Chinese).
[80] 王芳, 林涛, 张克, 等. 多阶段高斯伪谱法在编队最优控制中的应用[J]. 宇航学报, 2015, 36(11):1262-1269. WANG F, LIN T, ZHANG K, et al. Application of multi-phase Gauss pseudospectral method in optimal control for formation[J]. Journal of Astronautics, 2015, 36(11):1262-1269 (in Chinese).
[81] 张红梅, 张国山. 求解高超声速飞行器平衡状态的GA-SQP算法[J]. 航空学报, 2012, 33(1):138-146. ZHANG H M, ZHANG G S. GA-SQP algorithm for solving equilibrium states of hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(1):138-146 (in Chinese).
[82] 钟睿, 徐世杰. 基于直接配点法的绳系卫星系统变轨控制[J]. 航空学报, 2010, 31(3):572-578. ZHONG R, XU S J. Orbit-transfer control for TSS using direct collocation method[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(3):572-578 (in Chinese).
[83] WU J F, WANG H L, LI N, et al. Formation obstacle avoidance:A fluid-based solution[J]. IEEE Systems Journal, 2020, 14(1):1479-1490.
[84] BELLMAN R. Dynamic programming[J]. Science, 1966, 153(3731):34-37.
[85] OETTERSHAGEN P, FÖRSTER J, WIRTH L, et al. Meteorology-aware multi-goal path planning for large-scale inspection missions with long-endurance solar-powered aircraft[J]. Journal of Aerospace Information System, 2019, 16(10):390-408.
[86] YAO P, WANG H L, JI H X. Multi-UAVs tracking target in urban environment by model predictive control and improved grey wolf optimizer[J]. Aerospace Science and Technology, 2016, 55:131-143.
[87] SHAFERMAN V, SHIMA T. Unmanned aerial vehicles cooperative tracking of moving ground target in urban environments[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(5):1360-1371.
[88] QI S B, YAO P. Persistent tracking of maneuvering target using IMM filter and DMPC by initialization-guided game approach[J]. IEEE Systems Journal, 2019, 13(4):4442-4453.
[89] YAO P, WANG H L, SU Z K. Real-time path planning of unmanned aerial vehicle for target tracking and obstacle avoidance in complex dynamic environment[J]. Aerospace Science and Technology, 2015, 47:269-279.
[90] YAO P, WANG H L, SU Z K. Cooperative path planning with applications to target tracking and obstacle avoidance for multi-UAVs[J]. Aerospace Science and Technology, 2016, 54:10-22.
[91] KIM S, OH H, TSOURDOS A. Nonlinear model predictive coordinated standoff tracking of a moving ground vehicle[J]. Journal of Guidance, Control, and Dynamics, 2013, 36(2):557-566.
[92] HAMEED I A, LA COUR-HARBO A, OSEN O L. Side-to-side 3D coverage path planning approach for agricultural robots to minimize skip/overlap areas between swaths[J]. Robotics and Autonomous Systems, 2016, 76:36-45.
[93] BALAMPANIS F, MAZA I, OLLERO A. Area partition for coastal regions with multiple UAS[J]. Journal of Intelligent & Robotic Systems, 2017, 88(2-4):751-766.
[94] YAO P, WANG H L, JI H X. Gaussian mixture model and receding horizon control for multiple UAV search in complex environment[J]. Nonlinear Dynamics, 2017, 88(2):903-919.
[95] LOU B, WANG G F, HUANG Z L, et al. Preliminary design and performance analysis of a solar-powered unmanned seaplane[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2019, 233(15):5606-5617.
[96] SHAHEED M H, ABIDALI A, AHMED J, et al. Flying by the Sun only:The Solarcopter prototype[J]. Aerospace Science and Technology, 2015, 45:209-214.
[97] LIAO J, JIANG Y, LI J, et al. An improved energy management strategy of hybrid photovoltaic/battery/fuel cell system for stratospheric airship[J]. Acta Astronautica, 2018, 152:727-739.
[98] DU H F, LV M Y, ZHANG L C, et al. Energy management strategy design and station-keeping strategy optimization for high altitude balloon with altitude control system[J]. Aerospace Science and Technology, 2019, 93:105342.
[99] KAPLAN A, KINGRY N, UHING P, et al. Time-optimal path planning with power schedules for a solar-powered ground robot[J]. IEEE Transactions on Automation Science and Engineering, 2016, 14(2):1235-1244.
[100] MAKHSOOS A, MOUSAZADEH H, MOHTASEBI S S, et al. Design, simulation and experimental evaluation of energy system for an unmanned surface vehicle[J]. Energy, 2018, 148:362-372.