新能源飞行器技术专栏

大跨时空任务背景下的太阳能无人机任务规划技术研究进展

  • 吴健发 ,
  • 王宏伦 ,
  • 黄宇
展开
  • 1. 北京航空航天大学 自动化科学与电气工程学院, 北京 100083;
    2. 北京航空航天大学 飞行器控制一体化技术重点实验室, 北京 100083;
    3. 北京航空航天大学 高等理工学院, 北京 100083;
    4. 北京信息科技大学 自动化学院, 北京 100192

收稿日期: 2019-09-02

  修回日期: 2019-10-08

  网络出版日期: 2019-09-30

基金资助

国家自然科学基金(61175084,61673042,61803223)

Research development of solar powered UAV mission planning technology in large-scale time and space spans

  • WU Jianfa ,
  • WANG Honglun ,
  • HUANG Yu
Expand
  • 1. School of Automation Science and Electrical Engineering, Beihang University, Beijing 100083, China;
    2. Science and Technology on Aircraft Control Laboratory, Beihang University, Beijing 100083, China;
    3. Shenyuan Honors College, Beihang University, Beijing 100083, China;
    4. School of Automation, Beijing Information Science and Technology University, Beijing 100192, China

Received date: 2019-09-02

  Revised date: 2019-10-08

  Online published: 2019-09-30

Supported by

National Natural Science Foundation of China (61175084,61673042,61803223)

摘要

通过任务规划技术合理的优化太阳能无人机的飞行轨迹和动力学参数,能够有效提高太阳能无人机的能量利用率,使其胜任许多大范围跨时间跨空间飞行任务。从能量建模、续航评估和能量管理策略3个方面对大跨时空任务背景下太阳能无人机任务规划技术的研究进展进行了综述。在能量建模方面,介绍了当前主流的太阳辐射模型和能量生产基本框架;在续航评估方面,分析了目前的指标设计和应用方法;在能量管理策略方面,从能量综合应用、风力滑翔机制、轨迹优化方法和面向特定任务的应用4个角度,梳理了当前的研究现状。最后,对该领域未来可能的研究方向进行了展望。

本文引用格式

吴健发 , 王宏伦 , 黄宇 . 大跨时空任务背景下的太阳能无人机任务规划技术研究进展[J]. 航空学报, 2020 , 41(3) : 623414 -623414 . DOI: 10.7527/S1000-6893.2019.23414

Abstract

Using the mission planning technology to optimize the flight trajectory and dynamical parameters, the energy utilization of the Solar Powered Unmanned Aerial Vehicle (SUAV) can be effectively improved, making it qualified for many flight missions in large time spans and space spans. In this paper, the research development of the SUAV mission planning technology in large time spans and space spans is reviewed from the energy modeling, endurance evaluation, and energy management strategy. In energy modeling, the current mainstream solar radiation models and energy production basic frameworks are introduced. In endurance evaluation, the present index designs and application methods are analyzed. In energy management strategy, the current research status is combed through in terms of energy comprehensive utilization, gliding mechanism in wind fields, trajectory optimization method, and application for specific missions. Finally, promising research directions of this field are prospected.

参考文献

[1] ZHU X F, GUO Z, HOU Z X. Solar-powered airplanes:A historical perspective and future challenges[J]. Progress in Aerospace Sciences, 2014, 71:36-53.
[2] 苑轩. 我国首款大型太阳能无人机完成两万米高空飞行[J]. 中国航天, 2017 (7):33-33. YUAN X. Chinese first large-scale solar-powered UAV has completed a 20 000-meter high-altitude flight[J]. Aerospace China, 2017(7):33-33 (in Chinese).
[3] NASA. NASA Armstrong fact sheet:Pathfinder solar-powered aircraft[EB/OL]. (2017-08-07)[2019-09-20]. https://www.nasa.gov/centers/armstrong/news/FactSheets/FS-034-DFRC.html.
[4] NASA. NASA Armstrong fact sheet:Helios prototype[EB/OL]. (2017-08-07)[2019-09-20]. https://www.nasa.gov/centers/armstrong/news/FactSheets/FS-068-DFRC.html.
[5] 温杰. "西风"太阳能无人机的改进与发展[J]. 国际航空, 2017(10):22-24. WEN J. Improvement and development of "Zephyr" UAV[J]. International Aviation, 2017(10):22-24 (in Chinese).
[6] 搜狐网. 27.6小时! 西工大"魅影"团队突破自我 MY-12太阳能无人机再问鼎最长续航[EB/OL]. (2019-07-29)[2019-09-20]. http://www.sohu.com/a/330181618_714515. SOHU. 27.6 hours! MY-12 SUAV designed by "Meiying" Group in Northwestern Polytechnical University broke through the maximum endurance time in China again[EB/OL]. (2019-07-29)[2019-09-20]. http://www.sohu.com/a/330181618_714515 (in Chinese).
[7] 中华人民共和国国家国防科技工业局. "启明星"太阳能无人机大尺寸技术验证机完成首飞[EB/OL]. (2018-10-30)[2019-09-20]. http://www.sastind.gov.cn/n112/n117/c6803563/content.html. SASTIND, PRC. "QiMingXing" large-size technical demonstration SUAV has completed its maiden flight[EB/OL]. (2018-10-30)[2019-09-20]. http://www.sastind.gov.cn/n112/n117/c6803563/content.html (in Chinese).
[8] 中华人民共和国国家国防科技工业局. 航天科工飞云工程取得阶段性成果[EB/OL]. (2019-03-15)[2019-09-20]. http://www.sastind.gov.cn/n112/n117/c6805662/content.html. SASTIND, PRC. CASIC "FeiYun" Engineering has obtained partial results[EB/OL]. (2019-03-15)[2019-09-20]. http://www.sastind.gov.cn/n112/n117/c6805662/content.html (in Chinese).
[9] 新浪网. 中大型太阳能无人机"墨子II型"首飞成功[EB/OL]. (2019-07-31)[2019-09-20]. http://finance.sina.com.cn/roll/2019-07-31/doc-ihytcerm7468067.shtml. SINA. Middle-large size SUAV "MoZi II" made a successful maiden flight[EB/OL]. (2019-07-31)[2019-09-20]. http://finance.sina.com.cn/roll/2019-07-31/doc-ihytcerm7468067.html (in Chinese).
[10] HUANG Y, WANG H L, YAO P. Energy-optimal path planning for Solar-powered UAV with tracking moving ground target[J]. Aerospace Science and Technology, 2016, 53:241-251.
[11] HOSSEINI S, MESBAHI M. Energy-aware aerial surveillance for a long-endurance solar-powered unmanned aerial vehicles[J]. Journal of Guidance, Control, and Dynamics, 2016, 39(9):1980-1993.
[12] HUANG Y, WANG H L, LI N, et al. Endurance estimate for solar-powered unmanned aerial vehicles[C]//9th International Conference on Intelligent Human-Machine Systems and Cybernetics. Piscataway, NJ:IEEE Press, 2017:66-70.
[13] GAO X Z, HOU Z X, GUO Z, et al. Reviews of methods to extract and store energy for solar-powered aircraft[J]. Renewable and Sustainable Energy Reviews, 2015, 44:96-108.
[14] WU J F, WANG H L, HUANG Y, et al. Solar-powered aircraft endurance map[J]. Journal of Guidance, Control, and Dynamics, 2018, 42(3):687-694.
[15] WU J F, WANG H L, HUANG Y, et al. Energy management strategy for solar-powered UAV long-endurance target tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(4):1878-1891.
[16] LEE J S, YU K H. Optimal path planning of solar-powered UAV using gravitational potential energy[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(3):1442-1451.
[17] KIM S H, PADILLA G E G, KIM K J, et al. Flight path planning for a solar powered UAV in wind fields using direct collocation[J/OL]. (2019-07-03)[2019-07-26]. IEEE Transactions on Aerospace and Electronic Systems,https://doi.org/10.1109/TAES.2019.2926654.
[18] RAJENDRAN P, SMITH H. Implications of longitude and latitude on the size of solar-powered UAV[J]. Energy Conversion and Management, 2015, 98:107-114.
[19] OETTERSHAGEN P, MELZER A, MANTEL T, et al. Design of small hand-launched solar-powered UAVs:From concept study to a multi-day world endurance record flight[J]. Journal of Field Robotics, 2017, 34(7):1352-1377.
[20] 昌敏, 周洲, 王睿. 基于机翼-帆尾的高纬度跨年驻留太阳能飞机总体参数设计方法[J]. 航空学报, 2014, 35(6):1592-1603. CHANG M, ZHOU Z, WANG R. Primary parameters determination for year-round solar-powered aircraft of wing-sail type at higher latitudes[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(6):1592-1603 (in Chinese).
[21] 王科雷, 周洲, 甘文彪, 等. 太阳能无人机低雷诺数翼型气动特性研究[J]. 西北工业大学学报, 2014, 32(2):163-168. WANG K L, ZHOU Z, GAN W B, et al. Studying aerodynamic performances of the low-Reynolds-number airfoil of solar energy UAV[J]. Journal of Northwestern Polytechnical University, 2014, 32(2):163-168 (in Chinese).
[22] 王伟, 周洲, 祝小平, 等. 考虑几何非线性效应的大柔性太阳能无人机静气动弹性分析[J]. 西北工业大学学报, 2014, 32(4):499-504. WANG W, ZHOU Z, ZHU X P, et al. Static aeroelastic characteristics analysis of a very flexible solar powered UAV with geometrical nonlinear effect considered[J]. Journal of Northwestern Polytechnical University, 2014, 32(4):499-504 (in Chinese).
[23] WILSON C, NUTBEAN J, BOND I. Aerodynamic and structural design of a solar-powered micro unmanned air vehicle[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2000, 214(2):97-106.
[24] 昌敏, 周洲, 成柯, 等. 高空驻留太阳能飞机主动式光伏组件面功率特性研究[J]. 航空学报, 2013, 34(2):273-281. CHANG M, ZHOU Z, CHENG K, et al. Exploring the characteristics of power density of tracking PV modules for high-altitude stationary solar-powered airplanes[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(2):273-281 (in Chinese).
[25] FAZELPOUR F, VAFAEIPOUR M, RAHBARI O, et al. Considerable parameters of using PV cells for solar-powered aircrafts[J]. Renewable and Sustainable Energy Reviews, 2013, 22:81-91.
[26] 成珂, 王忠伟, 周洲. 太阳能飞机工作条件对太阳能电池性能的影响[J]. 西北工业大学学报, 2012, 30(4):535-540. CHEN K, WANG Z W, ZHOU Z. Exploring effects of solar-powered airplane operating conditions on solar cell performance[J]. Journal of Northwestern Polytechnical University, 2012, 30(4):535-540 (in Chinese).
[27] WU J F, WANG H L, LI N, et al. Distributed trajectory optimization for multiple solar-powered UAVs target tracking in urban environment by adaptive grasshopper optimization algorithm[J]. Aerospace Science and Technology, 2017, 70:497-510.
[28] WU J F, WANG H L, LI N, et al. Path planning for solar-powered UAV in urban environment[J]. Neurocomputing, 2018, 275:2055-2065.
[29] KLESH A T, KABAMBA P T. Solar-powered aircraft:Energy-optimal path planning and perpetual endurance[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(4):1320-1329.
[30] DAI R, LEE U, HOSSEINI S, et al. Optimal path planning for solar-powered UAVs based on unit quaternions[C]//2012 51st IEEE Conference on Decision and Control. Piscataway, NJ:IEEE Press, 2012:3104-3109.
[31] DAI R. Path planning of solar-powered unmanned aerial vehicles at low altitude[C]//2013 56th IEEE International Midwest Symposium on Circuits and Systems. Piscataway, NJ:IEEE Press, 2013:693-696.
[32] HOSSEINI S, DAI R, MESBAHI M. Optimal path planning and power allocation for a long endurance solar-powered UAV[C]//2013 American Control Conference. Piscataway, NJ:IEEE Press, 2013:2588-2593.
[33] SPANGELO S C, GILBERT E G. Power optimization of solar-powered aircraft with specified closed ground tracks[J]. Journal of Aircraft, 2012, 50(1):232-238.
[34] HUANG Y, CHEN J G, WANG H L, et al. A method of 3D path planning for solar-powered UAV with fixed target and solar tracking[J]. Aerospace Science and Technology, 2019, 92:831-838.
[35] SUN Y, XU D F, NG D W K, et al. Optimal 3D-trajectory design and resource allocation for solar-powered UAV communication systems[J]. IEEE Transactions on Communications, 2019, 67(6):4281-4298.
[36] ABBE G, SMITH H. Technological development trends in solar-powered aircraft systems[J]. Renewable and Sustainable Energy Reviews, 2016, 60:770-783.
[37] GAO X Z, HOU Z X, GUO Z, et al. Energy management strategy for solar-powered high-altitude long-endurance aircraft[J]. Energy Conversion and Management, 2013, 70:20-30.
[38] 马东立, 包文卓, 乔宇航. 基于重力储能的太阳能飞机飞行轨迹研究[J]. 航空学报, 2014, 35(2):408-416. MA D L, BAO W Z, QIAO Y H. Study of flight path for solar-powered aircraft based on gravity energy reservation[J]. Acta Aeronautica et Astronautica Sinica, 2013, 35(2):408-416 (in Chinese).
[39] GOSWAMI D Y. Principles of solar engineering[M]. 3rd ed. New York:CRC Press, 2015.
[40] GRENESTEDT J L, SPLETZER J R. Towards perpetual flight of a gliding unmanned aerial vehicle in the jet stream[C]//49th IEEE Conference on Decision and Control. Piscataway, NJ:IEEE Press, 2010:6343-6349.
[41] KNEIZYS F X, SHETTLE E P, ABREU L W, et al. Users guide to LOWTRAN 7[R]. Hanscom AFB, MA:Air Force Geophysics Lab, 1988.
[42] 王宏伦, 黄宇. 太阳能无人机能量生产估计模型及应用[J]. 战术导弹技术, 2017 (1):9-16. WANG H L, HUANG Y. An Integrated energy model of solar-powered unmanned aerial vehicles for predicting collected solar energy and application[J]. Tactical Missile Technology, 2017 (1):9-16 (in Chinese).
[43] BADESCU V, GUEYMARD C A, CHEVAL S, et al. Accuracy analysis for fifty-four clear-sky solar radiation models using routine hourly global irradiance measurements in Romania[J]. Renewable Energy, 2013, 55:85-103.
[44] ASHRAE. 2013 ASHRAE Handbook:Fundamentals (IP & SI)[M]. Atlanta, GA:ASHRAE, 2013.
[45] HOSSEINI S, MESBAHI M. Energy aware aerial surveillance for a long endurance solar-powered UAV[C]//AIAA Guidance, Navigation, and Control Conference. Reston, VA:AIAA, 2013:4552.
[46] WANG S Q, MA D L, YANG M Q, et al. Flight strategy optimization for high-altitude long-endurance solar-powered aircraft based on Gauss pseudo-spectral method[J]. Chinese Journal of Aeronautics, 2019, 32(10):2286-2298
[47] DURISCH W, URBAN J, SMESTAD G. Characterisation of solar cells and modules under actual operating conditions[J]. Renewable Energy, 1996, 8(1-4):359-366.
[48] MARDANPOUR P, HODGES D H. Passive morphing of flying wing aircraft:Z-shaped configuration[J]. Journal of Fluids and Structures, 2014, 44:17-30.
[49] WU M J, XIAO T H, ANG H S, et al. Optimal flight planning for a Z-shaped Morphing-wing solar-powered unmanned aerial vehicle[J]. Journal of Guidance, Control, and Dynamics, 2017, 41(2):497-505.
[50] WU M J, SHI Z W, XIAO T H, et al. Energy optimization and investigation for Z-shaped sun-tracking morphing-wing solar-powered UAV[J]. Aerospace Science and Technology, 2019, 91:1-11.
[51] WU M J, XIAO T H, ANG H S, et al. Investigation of a morphing wing solar-powered unmanned aircraft with enlarged flight latitude[J]. Journal of Aircraft, 2017, 54(5):1996-2004.
[52] 王刚, 胡峪, 宋笔锋, 等. 电动无人机动力系统优化设计及航时评估[J]. 航空动力学报, 2015, 30(8):1834-1840. WANG G, HU Y, SONG B F, et al. Optimal design and endurance estimation of propulsion system for electric-powered unmanned aerial vehicle[J]. Journal of Aerospace Power, 2015, 30(8):1834-1840 (in Chinese).
[53] TRAUB L W. Range and endurance estimates for battery-powered aircraft[J]. Journal of Aircraft, 2011, 48(2):703-707.
[54] ABDILLA A, RICHARDS A, BURROW S. Power and endurance modelling of battery-powered rotorcraft[C]//2015 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ:IEEE Press, 2015:675-680.
[55] AVANZINI G, GIULIETTI F. Maximum range for battery-powered aircraft[J]. Journal of Aircraft, 2012, 50(1):304-307.
[56] GATTI M, GIULIETTI F, TURCI M. Maximum endurance for battery-powered rotary-wing aircraft[J]. Aerospace Science and Technology, 2015, 45:174-179.
[57] SMETANA F O. Flight vehicle performance and aerodynamic control[M]. Reston, VA:AIAA, 2001.
[58] JR A E B, DESAI M N, HOFFMAN W C. Energy-state approximation in performance optimization of supersonicaircraft[J]. Journal of Aircraft, 1969, 6(6):481-488.
[59] 林海. 能量法及其试飞方法研究[J]. 飞行力学, 1993, 11(4):63-68. LIN H. The studies of energy method and its flight test method[J]. Flight Dynamics, 1993, 11(4):63-68 (in Chinese).
[60] MONTGOMERY S, MOURTOS N. Design of a 5 kilogram solar-powered unmanned airplane for perpetual solar endurance flight[C]//49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Reston, VA:AIAA, 2013:3875.
[61] BURTON M J, HOBURG W W. Solar-electric and gas powered, long-endurance UAV sizing via geometric programming[C]//18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston, VA:AIAA, 2017:4147.
[62] SACHS G, LENZ J, HOLZAPFEL F. Unlimited endurance performance of solar UAVs with minimal or zero electrical energy storage[C]//AIAA Guidance, Navigation, and Control Conference. Reston, VA:AIAA, 2009:6013.
[63] GAO X Z, HOU Z X, GUO Z, et al. Joint optimization of battery mass and flight trajectory for high-altitude solar-powered aircraft[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2014, 228(13):2439-2451.
[64] GAO X Z, HOU Z X, GUO Z, et al. The equivalence of gravitational potential and rechargeable battery for high-altitude long-endurance solar-powered aircraft on energy storage[J]. Energy Conversion and Management, 2013, 76:986-995.
[65] GAO X Z, HOU Z X, GUO Z, et al. Research on characteristics of gravitational gliding for high-altitude solar-powered unmanned aerial vehicles[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2013, 227(12):1911-1923.
[66] SHIN K, HWANG H, AHN J. Mission analysis of solar UAV for high-altitude long-endurance flight[J]. Journal of Aerospace Engineering, 2018, 31(3):04018010.
[67] 王少奇, 马东立, 杨穆清, 等. 高空太阳能无人机三维航迹优化[J]. 北京航空航天大学学报, 2019, 45(5):936-943. WANG S Q, MA D L, YANG M Q, et al. Three-dimensional optimal path planning for high-altitude solar-powered UAV[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(5):936-943 (in Chinese).
[68] MARTIN R A, GATES N S, NING A, et al. Dynamic optimization of high-altitude solar aircraft trajectories under station-keeping constraints[J]. Journal of Guidance, Control, and Dynamics, 2018, 42(3):538-552.
[69] GAO X Z, HOU Z X, GUO Z, et al. Energy extraction from wind shear:Reviews of dynamic soaring[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2015, 229(12):2336-2348.
[70] JONES D. Forever airborne[J]. Nature, 1994, 372(6502):136-136.
[71] ZHAO Y J. Optimal patterns of glider dynamic soaring[J]. Optimal Control Applications and Methods, 2004, 25(2):67-89.
[72] DEITTERT M, RICHARDS A, TOOMER C A, et al. Engineless unmanned aerial vehicle propulsion by dynamic soaring[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(5):1446-1457.
[73] LANGELAAN J W, ROY N. Enabling new missions for robotic aircraft[J]. Science, 2009, 326(5960):1642-1644.
[74] 朱炳杰, 侯中喜. 无人机风梯度滑翔过程中能量变化[J]. 国防科技大学学报, 2015, 37(1):78-83. ZHU B J, HOU Z X. Energy transformation in dynamic soaring of unmanned aerial vehicles[J]. Journal of National University of Defense Technology, 2015, 37(1):78-83 (in Chinese).
[75] 刘多能, 侯中喜, 郭正, 等. 动态滑翔运动建模, 机理分析与航迹优化[J]. 国防科技大学学报, 2016, 38(5):78-85. LIU D N, HOU Z X, GUO Z, et al. Motion modeling, mechanism analysis and trajectory optimization for dynamic soaring[J]. Journal of National University of Defense Technology, 2016, 38(5):78-85 (in Chinese).
[76] GAO X Z, HOU Z X, GUO Z, et al. The influence of wind shear to the performance of high-altitude solar-powered aircraft[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2014, 228(9):1562-1573.
[77] GAO X Z, HOU Z X, GUO Z, et al. Analysis and design of guidance-strategy for dynamic soaring with UAVs[J]. Control Engineering Practice, 2014, 32:218-226.
[78] WIRTH L, OETTERSHAGEN P, AMBüHL J, et al. Meteorological path planning using dynamic programming for a solar-powered UAV[C]//2015 IEEE Aerospace Conference. Piscataway, NJ:IEEE Press, 2015:1-11.
[79] 孙志远, 金光, 张刘, 等. 基于自适应高斯伪谱法的SGCMG无奇异框架角轨迹规划[J]. 宇航学报, 2012, 33(5):597-604. SUN Z Y, JIN G, ZHANG L, et al. SGCMG non-singularity trajectory programming algorithm based on adaptive Gauss pseudospectral method[J]. Journal of Astronautics, 2012, 33(5):597-604 (in Chinese).
[80] 王芳, 林涛, 张克, 等. 多阶段高斯伪谱法在编队最优控制中的应用[J]. 宇航学报, 2015, 36(11):1262-1269. WANG F, LIN T, ZHANG K, et al. Application of multi-phase Gauss pseudospectral method in optimal control for formation[J]. Journal of Astronautics, 2015, 36(11):1262-1269 (in Chinese).
[81] 张红梅, 张国山. 求解高超声速飞行器平衡状态的GA-SQP算法[J]. 航空学报, 2012, 33(1):138-146. ZHANG H M, ZHANG G S. GA-SQP algorithm for solving equilibrium states of hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(1):138-146 (in Chinese).
[82] 钟睿, 徐世杰. 基于直接配点法的绳系卫星系统变轨控制[J]. 航空学报, 2010, 31(3):572-578. ZHONG R, XU S J. Orbit-transfer control for TSS using direct collocation method[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(3):572-578 (in Chinese).
[83] WU J F, WANG H L, LI N, et al. Formation obstacle avoidance:A fluid-based solution[J]. IEEE Systems Journal, 2020, 14(1):1479-1490.
[84] BELLMAN R. Dynamic programming[J]. Science, 1966, 153(3731):34-37.
[85] OETTERSHAGEN P, FÖRSTER J, WIRTH L, et al. Meteorology-aware multi-goal path planning for large-scale inspection missions with long-endurance solar-powered aircraft[J]. Journal of Aerospace Information System, 2019, 16(10):390-408.
[86] YAO P, WANG H L, JI H X. Multi-UAVs tracking target in urban environment by model predictive control and improved grey wolf optimizer[J]. Aerospace Science and Technology, 2016, 55:131-143.
[87] SHAFERMAN V, SHIMA T. Unmanned aerial vehicles cooperative tracking of moving ground target in urban environments[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(5):1360-1371.
[88] QI S B, YAO P. Persistent tracking of maneuvering target using IMM filter and DMPC by initialization-guided game approach[J]. IEEE Systems Journal, 2019, 13(4):4442-4453.
[89] YAO P, WANG H L, SU Z K. Real-time path planning of unmanned aerial vehicle for target tracking and obstacle avoidance in complex dynamic environment[J]. Aerospace Science and Technology, 2015, 47:269-279.
[90] YAO P, WANG H L, SU Z K. Cooperative path planning with applications to target tracking and obstacle avoidance for multi-UAVs[J]. Aerospace Science and Technology, 2016, 54:10-22.
[91] KIM S, OH H, TSOURDOS A. Nonlinear model predictive coordinated standoff tracking of a moving ground vehicle[J]. Journal of Guidance, Control, and Dynamics, 2013, 36(2):557-566.
[92] HAMEED I A, LA COUR-HARBO A, OSEN O L. Side-to-side 3D coverage path planning approach for agricultural robots to minimize skip/overlap areas between swaths[J]. Robotics and Autonomous Systems, 2016, 76:36-45.
[93] BALAMPANIS F, MAZA I, OLLERO A. Area partition for coastal regions with multiple UAS[J]. Journal of Intelligent & Robotic Systems, 2017, 88(2-4):751-766.
[94] YAO P, WANG H L, JI H X. Gaussian mixture model and receding horizon control for multiple UAV search in complex environment[J]. Nonlinear Dynamics, 2017, 88(2):903-919.
[95] LOU B, WANG G F, HUANG Z L, et al. Preliminary design and performance analysis of a solar-powered unmanned seaplane[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2019, 233(15):5606-5617.
[96] SHAHEED M H, ABIDALI A, AHMED J, et al. Flying by the Sun only:The Solarcopter prototype[J]. Aerospace Science and Technology, 2015, 45:209-214.
[97] LIAO J, JIANG Y, LI J, et al. An improved energy management strategy of hybrid photovoltaic/battery/fuel cell system for stratospheric airship[J]. Acta Astronautica, 2018, 152:727-739.
[98] DU H F, LV M Y, ZHANG L C, et al. Energy management strategy design and station-keeping strategy optimization for high altitude balloon with altitude control system[J]. Aerospace Science and Technology, 2019, 93:105342.
[99] KAPLAN A, KINGRY N, UHING P, et al. Time-optimal path planning with power schedules for a solar-powered ground robot[J]. IEEE Transactions on Automation Science and Engineering, 2016, 14(2):1235-1244.
[100] MAKHSOOS A, MOUSAZADEH H, MOHTASEBI S S, et al. Design, simulation and experimental evaluation of energy system for an unmanned surface vehicle[J]. Energy, 2018, 148:362-372.
文章导航

/