固体力学与飞行器总体设计

基于非线性Wiener过程的航空发动机性能衰减建模与剩余寿命预测

  • 王玺 ,
  • 胡昌华 ,
  • 任子强 ,
  • 熊薇
展开
  • 1. 火箭军工程大学 导弹工程学院, 西安 710025;
    2. 国防大学 联合勤务学院, 北京 100089

收稿日期: 2019-07-16

  修回日期: 2019-08-14

  网络出版日期: 2019-09-30

基金资助

国家自然科学基金(61833016,61573365)

Performance degradation modeling and remaining useful life prediction for aero-engine based on nonlinear Wiener process

  • WANG Xi ,
  • HU Changhua ,
  • REN Ziqiang ,
  • XIONG Wei
Expand
  • 1. College of Missile Engineering, Rocket Force University of Engineering, Xi'an 710025, China;
    2. College of Joint Service, National Defence University, Beijing 100089, China

Received date: 2019-07-16

  Revised date: 2019-08-14

  Online published: 2019-09-30

Supported by

National Natural Science Foundation of China (61833016, 61573365)

摘要

针对航空发动机在性能衰减过程中普遍存在的非线性和三源不确定性问题,提出了一种基于非线性Wiener过程的航空发动机性能衰减建模与剩余寿命(RUL)预测方法。首先,为解决目前大多数剩余寿命预测方法中潜在假设的局限性,即当前时刻估计的漂移系数与上一时刻漂移系数的后验估计完全相等,在状态空间模型的框架下建立了一类新的同时考虑非线性和三源不确定性的性能衰减模型,并在首达时间下推导出剩余寿命的分布。然后,针对新研发航空发动机缺乏历史数据和先验信息的问题,提出了一种基于Kalman滤波和条件期望最大化(ECM)算法的参数估计方法,使得估计的模型参数不依赖于历史数据量。同时能够在获得一个新的性能衰减数据后,实现对模型参数的自适应估计和在线更新,进而实时地更新航空发动机的剩余寿命分布。实验结果表明,本文方法可以有效地提高剩余寿命预测的准确性,能为航空发动机的维修决策提供可靠的依据。

本文引用格式

王玺 , 胡昌华 , 任子强 , 熊薇 . 基于非线性Wiener过程的航空发动机性能衰减建模与剩余寿命预测[J]. 航空学报, 2020 , 41(2) : 223291 -223291 . DOI: 10.7527/S1000-6893.2019.23291

Abstract

For the nonlinearity and three-source variability of aeroengines in the performance degradation process, a performance degradation modeling and Remaining Useful Life (RUL) prediction method for aero-engines based on nonlinear Wiener process is proposed. First, in order to solve the limitations of potential hypothesis in most current RUL prediction methods, that is, the drift coefficient of the current time estimate is exactly equal to the posterior estimate of the drift coefficient of the previous time, a new class of performance degradation model considering both nonlinearity and three-source variability is established under the framework of state space model. Further, the associated RUL distribution is derived under the first hitting time. Then, for the newly developed aero-engines lacking historical data and prior information, a parameter estimation method based on the Kalman filtering and Expectation Conditional Maximization (ECM) algorithm is proposed, so that the estimated model parameters are independent of the historical data volume. After obtaining a new performance degradation data, the model parameters can be estimated adaptively so as to update the RUL distribution of aeroengines in real time. The experimental results show that the proposed method can effectively improve the accuracy of RUL prediction and provide a reliable basis for maintenance decision of aeroengines.

参考文献

[1] 刘君强, 谢吉伟, 左洪福, 等. 基于随机Wiener过程的航空发动机剩余寿命预测[J]. 航空学报, 2015, 36(2):564-574. LIU J Q, XIE J W, ZUO H F, et al. Residual lifetime prediction for aeroengines based on Wiener process with random effects[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2):564-574(in Chinese).
[2] 司小胜, 胡昌华, 张琪, 等. 不确定退化测量数据下的剩余寿命估计[J]. 电子学报, 2015, 43(1):30-35. SI X S, HU C H, ZHANG Q, et al. Estimating remaining useful life under uncertain degradation measurements[J]. Acta Electronica Sinica, 2015, 43(1):30-35(in Chinese).
[3] 黄亮, 刘君强, 贡英杰. 基于Wiener过程的发动机多阶段剩余寿命预测[J]. 北京航空航天大学学报, 2018, 44(5):1081-1087. HUANG L, LIU J Q, GONG Y J. Multi-phase residual life prediction of engines based on Wiener process[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(5):1081-1087(in Chinese).
[4] 郭庆, 徐甘生, 赵洪利. 基于蒙特卡罗发动机竞争失效的下发仿真模型[J]. 航空动力学报, 2019, 34(3):616-626. GUO Q, XU G S, ZHAO H L. Monte Carlo based competitive failure delivery simulation model of engine[J]. Journal of Aerospace Power, 2019, 34(3):616-626(in Chinese).
[5] 黄亮, 刘君强, 贡英杰. 基于一致性检验的航空发动机剩余寿命预测[J]. 系统工程与电子技术, 2018, 40(12):2736-2742. HUANG L, LIU J Q, GONG Y J. Residual lifetime prediction of aeroengines based on the consistency test[J]. Systems Engineering and Electronics, 2018, 40(12):2736-2742(in Chinese).
[6] 王浩伟, 奚文骏, 冯玉光. 基于退化失效与突发失效竞争的导弹剩余寿命预测[J]. 航空学报, 2016, 37(4):1240-1248. WANG H W, XI W J, FENG Y G. Remaining life prediction based on competing risks of degradation failure and traumatic failure for missiles[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(4):1240-1248(in Chinese).
[7] 冯磊, 王宏力, 司小胜, 等. 基于半随机滤波-期望最大化算法的剩余寿命在线预测[J]. 航空学报, 2015, 36(2):555-563. FENG L, WANG H L, SI X S, et al. Real-time residual life prediction based on semi-stochastic filter and expectation maximization algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2):555-563(in Chinese).
[8] 王浩伟, 滕克难, 李军亮. 随机环境应力冲击下基于多参数相关退化的导弹部件寿命预测[J]. 航空学报, 2016, 37(11):3404-3412. WANG H W, TENG K N, LI J L. Lifetime prediction for missile components based on multiple parameters correlative degrading with random shocks of environmental stresses[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11):3404-3412(in Chinese).
[9] 袁庆洋, 叶建华, 李晓钢. BLDC电机温度退化多段Wiener过程建模[J]. 北京航空航天大学学报, 2018, 44(7):1514-1519. YUAN Q Y, YE J H, LI X G. Multistage temperature degradation modeling for BLDC motor based on Wiener process[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(7):1514-1519(in Chinese).
[10] WANG D, TSUI K L. Brownian motion with adaptive drift for remaining useful life prediction:Revisited[J]. Mechanical Systems and Signal Processing, 2018, 99:691-701.
[11] 张先航, 李曙林, 常飞, 等. 基于Wiener过程的航空燃油泵寿命预测[J]. 航空科学技术, 2017, 28(11):47-53. ZHANG X H, LI S L, CHANG F, et al. Life prediction of aviation fuel pump based on Wiener process[J]. Aeronautical Science & Technology, 2017, 28(11):47-53(in Chinese).
[12] 司小胜, 胡昌华, 李娟, 等. 具有不确定测量的非线性随机退化系统剩余寿命预测[J]. 上海交通大学学报, 2015, 49(6):855-860. SI X S, HU C H, LI J, et al. Remaining useful life prediction of nonlinear stochastic degrading systems subject to uncertain measurements[J]. Journal of Shanghai Jiaotong University, 2015, 49(6):855-860(in Chinese).
[13] WANG X, HU C H, SI X S, et al. An adaptive prognostic approach for newly developed system with three-source variability[J]. IEEE Access, 2019, 7:53091-53102.
[14] ZHENG J F, SI X S, HU C H, et al. A nonlinear prognostic model for degrading systems with three-source variability[J]. IEEE Transactions on Reliability, 2016, 65(2):736-750.
[15] DONG G Z, CHEN Z H, WEI J W, et al. Battery health prognosis using Brownian motion modeling and particle filtering[J]. IEEE Transactions on Industrial Electronics, 2018, 65(11):8646-8655.
[16] 蔡忠义, 郭建胜, 陈云翔, 等. 基于步进加速退化建模的剩余寿命在线预测[J]. 系统工程与电子技术, 2018, 40(11):218-223. CAI Z Y, GUO J S, CHEN Y X, et al. Remaining lifetime online prediction based on step-stress accelerated degradation modeling[J]. Systems Engineering and Electronics, 2018, 40(11):218-223(in Chinese).
[17] SI X S. An adaptive prognostic approach via nonlinear degradation modeling:application to battery data[J]. IEEE Transactions on Industrial Electronics, 2015, 62(8):5082-5096.
[18] DEMPSTER A P, LAIRD N M, RUBIN D B. Maximum likelihood from incomplete data via the EM algorithm[J]. Journal of the Royal Statistical Society, 1977, 39(1):1-38.
[19] SHUMWAY R H, STOFFER D S. Time series analysis and its applications[M]. 3rd ed. New York:Springer, 2011:326-344.
[20] NAGARAJU V, FIONDELLA L, ZEEPHONGSEKUL P, et al. Performance optimized expectation conditional maximization algorithms for nonhomogeneous poisson process software reliability models[J]. IEEE Transactions on Reliability, 2017, 66(3):722-734.
[21] HORAUD R, FORBES F, YGUEL M, et al. Rigid and articulated point registration with expectation conditional maximization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(3):587-602.
[22] 彭鸿博, 刘孟萌, 王悦阁. 基于起飞排气温度裕度(EGTM)的航空发动机寿命预测研究[J]. 科学技术与工程, 2014, 14(16):160-164. PENG H B, LIU M M, WANG Y G. Life prediction of engine based on take-off EGTM[J]. Science Technology and Engineering, 2014, 14(16):160-164(in Chinese).
[23] 任淑红, 左洪福, 白芳. 基于带漂移的布朗运动的民用航空发动机实时性能可靠性预测[J]. 航空动力学报, 2009, 24(12):2796-2801. REN S H, ZUO H F, BAI F. Real-time performance reliability prediction for civil aviation engines based on Brownian motion with drift[J]. Journal of Aerospace Power, 2009, 24(12):2796-2801(in Chinese).
文章导航

/