飞行器气动外形数值优化与设计专栏

一种适用于气动优化的高效自适应全局优化方法

  • 李春娜 ,
  • 张阳康
展开
  • 西北工业大学 航天学院空天飞行技术研究所, 西安 710072

收稿日期: 2019-08-08

  修回日期: 2019-08-25

  网络出版日期: 2019-09-30

基金资助

国家自然科学基金(11502209)

An efficient adaptive global optimization method suitable for aerodynamic optimization

  • LI Chunna ,
  • ZHANG Yangkang
Expand
  • Aerospace Flight Vehicle Design Key Laboratory, School of Astronautics, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2019-08-08

  Revised date: 2019-08-25

  Online published: 2019-09-30

Supported by

National Natural Science Foundation of China (11502209)

摘要

随着设计空间的增大和优化问题非线性程度的提高,基于代理模型的优化(SBO)过程收敛越来越慢,并且在局部勘测上呈现不足。本文发展了一种高效自适应全局优化方法,在整个样本细化迭代过程中采用变设计空间取样:即在每一步样本细化迭代过程中,利用当前设计空间中的样本建立代理模型,并且根据样本的内部特征,利用模糊聚类算法将该设计空间分割成几个子空间,然后在每个子空间内通过最大化目标函数的期望提高函数和最小化模型预测目标来增加新的样本,之后对子空间进行融合更新设计空间。6个解析测试算例的结果表明,所发展的方法相比于一般的代理模型优化方法,具有更好的鲁棒性以及全局探索和局部勘测能力,更适用于具有强非线性和多极值的优化问题。RAE2822气动优化实例表明,所发展的方法在处理工程实际问题时,仍然能够保持很好的效率、鲁棒性和自适应性。

本文引用格式

李春娜 , 张阳康 . 一种适用于气动优化的高效自适应全局优化方法[J]. 航空学报, 2020 , 41(5) : 623352 -623352 . DOI: 10.7527/S1000-6893.2019.23352

Abstract

With the increase of design space and nonlinearity, the Surrogate-Based Optimization (SBO) process converges more slowly, and shows deficiency in local exploitation. This paper proposes an efficient adaptive global optimization method, of which infill samples are selected within a variable design space. In each refinement cycle, the current design space is divided into several subspaces by a fuzzy clustering algorithm, with respect to the inherent characteristics of samples in the current design space. Thus new infill samples are generated in each of the subspaces by maximizing expected improvement function and minimizing surrogate prediction, and the subspaces are then merged to form a new design space. The proposed method is validated by six analytical tests. In comparison with general SBO method, the proposed method shows better robustness and performance in global exploration and local exploitation, which is suitable for optimization problems with strong nonlinearity and many optima. The application by minimizing drag of RAE2822 airfoil indicates the proposed method performs well in solving engineering problems, and can maintain good efficiency, robustness and adaptability.

参考文献

[1] MORRIS A J. Structural optimization by geometric programming[J]. International Journal of Solids & Structures, 1972, 8(7):847-864.
[2] SACKS J, WELCH W J, MITCHELL T J, et al. Design and analysis of computer experiments[J]. Statistical Science, 1989, 4(4):409-423.
[3] 韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报, 2016, 37(11):3197-3225. HAN Z H. Kriging surrogate model and its application to design optimization:Review of recent progress[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11):3197-3225(in Chinese).
[4] 乔建领, 韩忠华, 宋文萍,等. 基于代理模型的高效全局低音爆优化设计方法[J]. 航空学报, 2018, 39(5):67-80. QIAO J L, HAN Z H, SONG W P, et al. An efficient surrogate-based global optimization for low boom design[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5):67-80(in Chinese).
[5] 韩忠华,张瑜,许晨舟,等. 基于代理模型的大型民机机翼气动优化设计[J]. 航空学报, 2019, 40(1):522398. HAN Z H, ZHANG Y, XU C Z, et al. Aerodynamic optimization design of large civil aircraft wings using surrogate-based model[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1):522398(in Chinese).
[6] 周旺仪,白俊强,乔磊,等. 变弯翼型与增升装置多目标气动优化设计研究[J]. 西北工业大学学报, 2018, 36(1):83-90. ZHOU W Y, BAI J Q, QIAO L, et al. A study of multi-objective aerodynamic optimization design for variable camber airfoils and high lift devices[J]. Journal of Northwestern Polytechnical University, 2018, 36(1):83-90(in Chinese).
[7] LIU B, GROUT V, NIKOLAEVA A. Efficient global optimization of actuator based on a surrogate model assisted hybrid algorithm[J]. IEEE Transactions on Industrial Electronics, 2018, 65(7):5712-5721.
[8] IULIANA E. Global optimization of benchmark aerodynamic cases using physics-based surrogate models[J]. Aerospace Science & Technology, 2017, 67:273-286.
[9] FORRESTER A I J, SÓBESTER A, KEANE A J. Engineering design via surrogate modeling:A practical guide[M]. Reston, VA:AIAA, 2008:77-106.
[10] LIU H, ONG Y S, CAI J. A survey of adaptive sampling for global metamodeling in support of simulation-based complex engineering design[J]. Structural and Multidisciplinary Optimization, 2018, 57(1):393-416.
[11] LI C N, BREZILLON J, GÖRTZ S. A hybrid approach for surrogate-based aerodynamic optimization with constraints[C]//2011 EUROGEN:Eccomas Thematic Conference, 2011:84-87.
[12] MACKMAN T J, ALLEN C B, GHOREYSHI M, et al. Comparison of adaptive sampling methods for generation of surrogate aerodynamic models[J]. AIAA Journal, 2013, 51(4):797-808.
[13] CHAUDHURI A, HAFTKA R T. Efficient global optimization with adaptive target setting[J]. AIAA Journal, 2014; 52(7):1573-1577.
[14] LIU H, ONG Y S, CAI J. A Survey of adaptive sampling for global metamodeling in support of simulation-based complex engineering design[J]. Structural and Multidisciplinary Optimization, 2017(6):1-24.
[15] KAMINSKY A L, WANG Y, PANT K, et al. Adaptive sampling techniques for surrogate modeling to create high-dimension aerodynamic loading response surfaces[C]//2018 Applied Aerodynamics Conference. Reston:AIAA, 2018
[16] CHENG G H, WANG G G. Trust region based MPS method for global optimization of high dimensional design problems:AIAA-2012-1590[R]. Reston:AIAA, 2012.
[17] GUO X S, LONG T,WU D, et al. RBF metamodel assisted global optimization method using particle swarm evolution and fuzzy clustering for sequential sampling:AIAA-2014-2305[R]. Reston:AIAA, 2014.
[18] QIU H, XU Y J, GAO L, et al. Multi-stage design space reduction and metamodeling optimization method based on self-organizing maps and fuzzy clustering[J]. Expert Systems with Applications, 2016, 46:180-195.
[19] SHI R H, LIU L, LONG T, et al. Sequential radial basis function using support vector machine for expensive design optimization[J]. AIAA Journal, 2017, 55(1):214-227.
[20] DONG H C, SONG B W, WANG P, et al. Surrogate-based optimization with clustering-based space-exploration for expensive multimodal problems[J]. Structural and Multidisciplinary Optimization, 2018, 57(4):1553-1577.
[21] 王超,高正红,张伟,等. 自适应设计空间扩展的高效代理模型气动优化设计方法[J]. 航空学报,2018, 39(7):121745. WANG C, GAO Z H, ZHANG W, et al. Efficient surrogate-based aerodynamic design optimization method with adaptive design space expansion[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(7):121745(in Chinese).
[22] LI C N, PAN Q F. Adaptive optimization methodology based on Kriging modeling and a trust region method[J]. Chinese Journal of Aeronautics, 2019, 32(2):281-295.
[23] LI C N. A surrogate-based framework with hybrid refinement strategies for aerodynamic shape optimization[D]. Cologne:Library and Information Base of German Aerospace Center, 2013:37-52.
[24] BEZDEK J C, CHRISTIAN J. Fuzzy mathematics in pattern classification[D]. New York:Cornell University, 1973:142-147.
[25] WU D, LONG T, WANG Y, et al. A sequential maximin latin hypercube sampling method and its application to aircraft design:AIAA-2015-3095[R]. Reston:AIAA, 2015.
[26] JONES D R, SCHONLAU M, WELCH W J. Efficient global optimization of expensive black-box functions[J]. Journal of Global Optimization, 1998, 13(4):455-492.
[27] LI Y, LIU L, LONG T, et al. Metamodel-based global optimization using fuzzy clustering for design space reduction[J]. Chinese Journal of Mechanical Engineering, 2013, 26(5):928-939.
[28] PALACIOS F, ECONOMON T D, ALONSO J J. Large-scale aircraft design using SU2[C]//AIAA Aerospace Sciences Meeting. Reston:AIAA, 2015.
[29] QIN A K, HUANG V L, SUGANTHAN P N. Differential evolution algorithm with strategy adaptation for global numerical optimization[J]. IEEE Transactions on Evolutionary Computation, 2009, 13(2):398-417.
文章导航

/