材料工程与机械制造

航空发动机主轴滚子轴承非典型失效机理

  • 郑金涛 ,
  • 邓四二 ,
  • 张文虎 ,
  • 党晓勇
展开
  • 1. 河南科技大学 机电工程学院, 洛阳 471003;
    2. 河南科技大学 高端轴承摩擦学技术与应用国家地方联合工程实验室, 洛阳 471003;
    3. 辽宁重大装备协同创新中心, 大连 116024;
    4. 北京动力机械研究所, 北京 100074

收稿日期: 2019-08-05

  修回日期: 2019-08-31

  网络出版日期: 2019-09-30

基金资助

国家自然科学基金青年科学基金(51905152);河南省自然科学基金(162300410086);河南省科技攻关计划(172102210254)

Atypical failure mechanism of aero-engine main shaft roller bearing

  • ZHENG Jintao ,
  • DENG Sier ,
  • ZHANG Wenhu ,
  • DANG Xiaoyong
Expand
  • 1. School of Mechatronics Engineering, Henan University of Science and Technology, Luoyang 471003, China;
    2. National United Engineering Laboratory for Advanced Bearing Tribology, Henan University of Science and Technology, Luoyang 471003, China;
    3. Collaborative Innovation Center of Major Machine Manufacturing in Liaoning, Dalian 116024, China;
    4. Beijing Power Machinery Institute, Beijing 100074, China

Received date: 2019-08-05

  Revised date: 2019-08-31

  Online published: 2019-09-30

Supported by

Young Scientists Fund of the National Natural Science Foundation of China (51905152); Natural Science Foundation of Henan Province (162300410086); Science and Technology Planning Project of Henan Province (172102210254)

摘要

针对某航空发动机圆柱滚子轴承的非典型失效问题,基于滚动轴承动力学理论,考虑滚子动不平衡量及滚子与套圈挡边间的碰摩,建立高速圆柱滚子轴承的动力学微分方程组,采用预估-校正GSTIFF(Gear stiff)变步长积分算法进行求解,分析了轴承工况参数和结构参数对动不平衡滚子的最大歪斜角和滚子与挡边最大碰撞力的影响。结果表明:滚子最大歪斜角和滚子与挡边最大碰撞力大小随滚子动不平衡量、轴承内圈转速增加而增大,与径向载荷间未表现出明显的相关性;较小的轴向游隙能够有效抑制滚子歪斜,但会增大滚子与挡边碰撞力,存在合理的轴向游隙范围使得在滚子歪斜角不会过大的情况下滚子与挡边碰撞力较小;较小的保持架兜孔周向游隙与挡边负背角和较大的滚子球端面半径能够减小滚子最大歪斜角和滚子与挡边最大碰撞力。

本文引用格式

郑金涛 , 邓四二 , 张文虎 , 党晓勇 . 航空发动机主轴滚子轴承非典型失效机理[J]. 航空学报, 2020 , 41(5) : 423347 -423347 . DOI: 10.7527/S1000-6893.2019.23347

Abstract

Based on the dynamic analysis of rolling bearings, this paper presents dynamics differential equations of high-speed cylindrical roller bearing, considering the roller dynamic unbalance and the collision and friction between the roller and the rib, aiming at the atypical failure of aero-engine cylindrical roller bearing.The problem is solved by the GSTIFF (Gear stiff) integer algorithm with variable step. And the influence of the bearing condition parameters and the structural parameters on the maximum skew angle of the dynamic unbalanced roller and maximum collision force between the roller and the rib are analyzed. The results show that the maximum skew angle of the roller and the maximum collision force between the roller and the rib increase with the roller dynamic unbalance and the inner ring rotation speed, showing no obvious correlation with the radial load. The smaller axial clearance can effectively suppress the roller skew, but it will increase the impact force between the roller and the rib. And a reasonable axial clearance range makes the collision force between the roller and the rib small when the roller skew angle is not excessive. The smaller cage pocket circumferential clearance and the rib negative back angle and the larger roller ball end face radius can reduce the maximum skew angle of the roller and the maximum collision force between the roller and the rib.

参考文献

[1] 李锦标, 吴林丰. 高速滚子轴承的动力学分析[J]. 航空学报, 1992, 13(12):625-632. LI J B, WU L F. Dynamic analysis of high-speed roller bearings[J]. Acta Aeronautica et Astronautica Sinica, 1992, 13(12):625-632(in Chinese).
[2] LEBLANC A, NELIAS D, DEFAYE C. Nonlinear dynamic analysis of cylindrical roller bearing with flexible rings[J]. Journal of Sound and Vibration, 2009, 325(1-2):145-160.
[3] WANG Y S, JIN N N, ZHU H F. Analysis on dynamic characteristics of high speed cylindrical roller bearing[J]. Key Engineering Materials, 2011, 480-481:980-985.
[4] GAO W J, NELIAS D, LYU Y G, et al. Numerical investigations on drag coefficient of circular cylinder with two free ends in roller bearings[J]. Tribology International, 2018, 123:43-49.
[5] 张志华, 周彦伟, 邓四二, 等. 高速圆柱滚子轴承动力学及运动仿真[J]. 轴承, 2006(1):1-3. ZHANG Z H, ZHOU Y W, DENG S E, et al. Dynamics and motion simulation of high speed cylindrical roller bearings[J]. Bearing, 2006(1):1-3(in Chinese).
[6] 邓四二, 顾金芳, 崔永存,等. 高速圆柱滚子轴承保持架动力学特性分析[J]. 航空动力学报, 2014, 29(1):207-215. DENG S E, GU J F, CUI Y C, et al. Analysis on dynamic characteristics of cage in high-speed cylindrical bearing[J]. Journal of Aerospace Power, 2014, 29(1):207-215(in Chinese).
[7] CUI Y C, DENG S E, ZHENG W H, et al. The impact of roller dynamic unbalance of high-speed cylindrical roller bearing on the cage nonlinear dynamic characteristics[J]. Mechanism & Machine Theory, 2017, 118:65-83.
[8] CUI Y C, DENG S E, NIU R J, et al. Vibration effect analysis of roller dynamic unbalance on the cage of high-speed cylindrical roller bearing[J]. Journal of Sound and Vibration, 2018, 434:314-335.
[9] 孙雪, 邓四二, 陈国定,等. 弹性支承下的高速圆柱滚子轴承振动特性研究[J]. 振动与冲击, 2017, 36(18):20-28. SUN X, DENG S E, CHEN G D, et al. Vibration characteristics analysis of high-speed cylindrical roller bearings with elastic supports[J]. Journal of Vibration and Shock, 2017, 36(18):20-28(in Chinese).
[10] 孙雪, 邓四二, 陈国定,等. 弹性支承下圆柱滚子轴承保持架稳定性分析[J]. 航空动力学报, 2018, 33(2):487-496. SUN X, DENG S E, CHEN G D, et al. Analysis of cage's stability in a cylindrical roller bearing with elastic supp-ort[J]. Journal of Aerospace Power, 2018, 33(2):487-496(in Chinese).
[11] 崔立, 王黎钦, 郑德志,等. 航空发动机高速滚子轴承动态特性分析[J]. 航空学报, 2008, 29(2):492-498. CUI L, WANG L Q, ZHENG D Z, et al. Analysis on dynamic characteristics of aero-engine high-speed roller bearings[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(2):492-498(in Chinese).
[12] 薛峥, 汪久根, RYMUZA Z,等. 圆柱滚子轴承的动力学分析[J]. 轴承, 2009(7):1-6. XUE Z, WANG J G, RYMUZA Z, et al. Dynamic analysis on cylindrical roller bearings[J]. Bearing, 2009(7):1-6(in Chinese).
[13] 韩勤锴, 李兴林, 闫国斌,等. 变载偏斜圆柱滚子轴承打滑动力学分析[J]. 机械工程学报, 2017, 53(9):58-65. HAN Q K, LI X L, YAN G B, et al. Dynamic skidding behavior of skew cylindrical roller bearings under time-variable loads[J]. Journal of Mechanical Engineering, 2017, 53(9):58-65(in Chinese).
[14] 曹伟, 王家序, 蒲伟,等. 加速工况下圆柱滚子轴承运动特性[J]. 中南大学学报(自然科学版), 2018, 49(3):583-591. CAO W, WANG J X, PU W, et al. Kinetic characteristics of cylindrical roller bearing during acceleration[J]. Journal of Central South University (Science and Technology), 2018, 49(3):583-591(in Chinese).
[15] LIU X L, BAI X R, CUI J L, et al. Thermal elastohydrodynamic lubrication analysis for tilted and skewed rollers in cylindrical roller bearings[J]. Proceedings of the Institution of Mechanical Engineers, Part J:Journal of Engineering Tribology, 2015, 230(4):428-441.
[16] ZHANG W H, DENG S E, CHENG G D, et al. Study on the impact of roller convexity excursion of high-speed cylindrical roller bearing on roller's dynamic characterist-ics[J]. Mechanism & Machine Theory, 2016, 103:21-39.
[17] PATRA P, SARAN V H, HARSHA S P, et al. Non-linear dynamic response analysis of cylindrical roller bearings due to rotational speed[J]. Proceedings of the Institution of Mechanical Engineers, Part K:Journal of Multi-body Dynamics, 2018:1-12.
[18] 赵燕, 毕明龙, 石东丹. 基于抑制滚子歪斜的高速圆柱滚子轴承设计[J]. 轴承, 2018(12):14-16. ZHAO Y, BI M L, SHI D D. Design of high speed cylindrical roller bearings based on control of roller skew[J]. Bearing, 2018(12):14-16(in Chinese).
[19] KLECKNER R J, PIRVICS J, CASTELLI V. High speed cylindrical rolling element bearing analysis "CYBEAN"-analytic formulation[J]. Journal of Lubrication Technology, 1980, 102(3):380-388.
[20] 邓四二, 贾群义, 薛进学. 滚动轴承设计原理[M]. 二版. 北京:中国标准出版社, 2014:258-260. DENG S E, JIA Q Y, XUE J X. Design theory of rolling bearings[M]. 2nd ed. Beijing:Standards Press of China, 2014:258-260(in Chinese).
[21] 杨咸启. 接触力学理论与滚动轴承设计分析[M]. 武汉:华中科技大学出版社, 2018:268-269. YANG X Q. Contact mechanics theory and design analysis of rolling bearings[M]. Wuhan:Huazhong University of Science and Technology Press, 2018:268-269(in Chinese).
文章导航

/