先进制造技术与装备专栏

基于单颗粒模型的航发叶片砂带磨削微观仿生锯齿状表面形成及实验

  • 肖贵坚 ,
  • 贺毅 ,
  • 黄云 ,
  • 李伟 ,
  • 李泉
展开
  • 重庆大学 机械传动国家重点实验室, 重庆 400044

收稿日期: 2019-07-15

  修回日期: 2019-08-07

  网络出版日期: 2019-09-30

基金资助

国家自然科学基金(51705047);国家科技重大专项(2017-VII-0002-0095)

Single particle removal model and experimental study on micro bionic zigzag surface of aeronautical blade using belt grinding

  • XIAO Guijian ,
  • HE Yi ,
  • HUANG Yun ,
  • LI Wei ,
  • LI Quan
Expand
  • The State Key Laboratory of Mechanical Transmissions, Chongqing University, Chongqing 400044, China

Received date: 2019-07-15

  Revised date: 2019-08-07

  Online published: 2019-09-30

Supported by

National Natural Science Foundation of China (51705047);National Science and Technology Major Project(2017-VII-0002-0095)

摘要

基于鲨鱼皮衍生出来的微观仿生表面被广泛应用于机翼等航空零部件的设计中,对于提高航空零部件的疲劳寿命、气流动力性等服役性能具有重要作用。砂带磨削能实现零部件表面的高完整性要求的加工,故常用于叶片、整体叶盘等复杂曲面的精密磨削,且能实现微观表面形状,但目前缺乏砂带磨削微观表面的系统研究从而难以实现其精确控制。首先,分析了微观仿生锯齿状表面的典型结构特征,基于单颗粒砂带磨削模型,研究了单颗粒砂带磨削去除机理;然后,建立了砂带磨削多颗粒参数化数学模型,提出了微观仿生锯齿状表面砂带磨削方法;最后,以钛合金叶片型面为对象,搭建以钛合金为典型材料的微观仿生锯齿状表面砂带磨削基础实验平台,进行仿生表面的实验验证。通过对磨削后叶片的表面微观形状参数进行检测,结果表明通过砂带磨削方法实现的微观仿生锯齿状表面以锯齿形沟槽为主,其中沟槽的宽度在2.5~8 μm之间、平均值为4.91 μm,沟槽的高度在3.5~9 μm之间、平均值为5.91 μm,沟槽的夹角在28°~68°之间、平均值为42.3°,验证了微观仿生锯齿状表面砂带磨削的可行性。

本文引用格式

肖贵坚 , 贺毅 , 黄云 , 李伟 , 李泉 . 基于单颗粒模型的航发叶片砂带磨削微观仿生锯齿状表面形成及实验[J]. 航空学报, 2020 , 41(7) : 623288 -623288 . DOI: 10.7527/S1000-6893.2019.23288

Abstract

The micro-biomimetic surface with drag reduction and high integrity derived from shark skin is widely used in aviation blades, playing an important role in improving the fatigue life and aerodynamic performance of aviation parts. Since belt grinding can achieve the machining of parts' surface with high integrity requirements, it is often used in the processing of blades. While it can achieve the machining of micro-surface shapes, few studies on the micro-surface of belt grinding have been conducted. Firstly, its typical structural characteristics are analyzed. Based on the grinding model of single grain belt, the grinding removal mechanism of single particle is studied. Then the parametric mathematical model of belt grinding particles is established, and the micro bionic zigzag surface grinding method is proposed. Finally, the blade profile of titanium alloy is verified by building the basic experimental platform of micro-bionic zigzag surface grinding with titanium alloy as the typical material. Micro shapes' parameters on the surface of a blade after processed are determined. The results showed that the majority of the micro bionic zigzag surface achieved by the belt grinding method has zigzag groove. The groove width is between 2.5-8 μm with a mean value of 4.91 μm, the height of the groove is between 3.5-9 μm with a mean value of 5.91 μm, and the groove angle is between 28°-68° with a mean value of 42.3°. These results verified that belt grinding can achieve the machining of micro bionic zigzag surface.

参考文献

[1] 丁文锋, 奚欣欣, 占京华, 等. 航空发动机钛材料磨削技术研究现状及展望[J]. 航空学报, 2019, 40(6):022763. DING W F, XI X X, ZHAN J H, et al. Research status and future development of grinding technology of titanium materials for aero-engine[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(6):022763(in Chinese).
[2] 马付良, 曾志翔, 高义民, 等. 仿生表面减阻的研究现状与进展[J]. 中国表面工程, 2016, 29(1):7-15. MA F L, ZENG Z X, GAO Y M, et al. Research status and progress of bionic surface drag reduction[J]. China Surface Engineering, 2016, 29(1):7-15(in Chinese).
[3] XIE J, XIE H F, LIU X R, et al. Dry micro-grooving on Si wafer using a coarse diamond grinding[J]. International Journal of Machine Tools and Manufacture, 2012, 61:1-8.
[4] ZHANG S J, ZHOU Y P, ZHANG H J, et al. Advances in ultra-precision machining of micro-structured functional surfaces and their typical applications[J]. International Journal of Machine Tools and Manufacture, 2019, 142:16-41.
[5] DENKENA B, KOEHLER J, WANG B. Manufacturing of functional riblet structure by profile grinding[J]. CIRP Journal of Manufacturing Science and Technology, 2010, 9(3):14-26.
[6] BRINKSMEIER E, SCHÖNEMANN L. Generation of discontinuous microstructures by diamond micro chiseling[J]. CIRP Annals-Manufacturing Technology, 2014, 63(1):49-52.
[7] 高航, 李世宠, 付有志, 等. 金属增材制造格栅零件磨粒流抛光[J]. 航空学报, 2017, 38(10):421210. GAO H, LI S C, FU Y Z, et al. Abrasive flow machining of additive manufactured metal grilling parts[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(10):421210(in Chinese).
[8] 高航, 吴鸣宇, 付有志, 等. 流体磨料光整加工理论与技术的发展[J]. 机械工程学报, 2015, 51(7):174-187. GAO H, WU M Y, FU Y Z, et al. Development of theory and technology in fluid abrasive fining technology[J]. Journal of Mechanical Engineering, 2015, 51(7):174-178(in Chinese).
[9] WANG W, YUN C. A path planning method for robotic belt surface grinding[J]. Chinese Journal of Aeronautics, 2011, 24(4):520-526.
[10] 黄云, 肖贵坚, 邹莱. 整体叶盘抛光技术的研究现状及发展趋势[J]. 航空学报, 2016, 37(7):2045-2064. HUANG Y, XIAO G J, ZOU L. Current situation and development trend of polishing technology for blisk[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(7):2045-2064(in Chinese).
[11] ECKART U, FLORIAN H. Improving efficiency in robot assisted belt grinding of high performance materials[J]. Advanced Materials Research, 2014, 907:139-149.
[12] ECKART U, FLORIAN H, MARCEL M, et al. Applicability of industrial robots for machining and repair processes[J]. Procedia CIRP, 2013, 11:234-238.
[13] XU X H, ZHU D H, ZHANG H Y, et al. Application of novel force control strategies to enhance robotic abrasive belt grinding quality of aero-engine blades[J]. Chinese Journal of Aeronautics, 2019, 32(10):2368-2382.
[14] 张雷, 周宛松, 卢磊, 等. 抛光力实时控制策略研究[J]. 东北大学学报(自然科学版), 2015, 36(6):853-857. ZHANG L, ZHOU W S, LU L, et al. Research on real-time control strategies of polishing force[J]. Journal of Northeastern University (Nature Science), 2015, 36(6):853-857(in Chinese).
[15] 肖贵坚, 黄云, 尹浩. 面向型面精度一致性的整体叶盘砂带磨削新方法及实验研究[J]. 航空学报, 2016, 37(5):1666-1676. XIAO G J, HUANG Y, YIN H. Experimental research of new belt grinding method for consistency of blisk profile and surface precision[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(5):1666-1676(in Chinese).
[16] XIAO G J, HUANG Y. Equivalent self-adaptive belt grinding for the real-R edge of an aero-engine precision-forged blade[J]. The International Journal of Advanced Manufacturing Technology, 2016, 83(9-12):1697-1706.
[17] 蔺小军, 杨艳, 吴广, 等. 面向叶片型面的五轴联动柔性数控砂带抛光技术[J]. 航空学报, 2015, 36(6):2074-2082. LIN X J, YANG Y, WU G, et al. Flexible polishing technology of five-axis NC abrasive belt for blade surface[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(6):2074-2082(in Chinese).
[18] BECHERT D W, BRUSE M, HAGE W, et al. Experiments on drag reducing surfaces and their optimization with an adjustable geometry[J]. Journal of Fluid Mechanics, 1997, 338:59-87.
[19] XIAO G J, HE Y, HUANG Y, et al. Shark-skin-inspired micro-riblets forming mechanism of TC17 titanium alloy with belt grinding[J]. IEEE Access, 2019, 7(1):107636-107648.
[20] CLAUDIA C B, SCHULZ U. Shark skin inspired riblet structures as aerodynamically optimized high temperature coatings for blades of aeroengines[J]. Smart Materials & Structures, 2011, 20(9):094016.
文章导航

/