To solve the complex structure, the low folding rate, and the large number of motion pairs of the existing tetrahedral-based truss antenna mechanism, a class of new modular deployable structure is proposed based on the 3RR-3RRR tetrahedral combination unit and the 3RR-3URU tetrahedral symmetric combination unit. The modular structure consisting of three combination units is selected as the analysis object. First, the composition of the modular structure and the axis arrangement of the Hook hinges are introduced in detail, and the number and property of the Degree of Freedom (DOF) of the combination unit itself are obtained by applying the idea of link-demolishing-equivalent-restoration, the screw theory and the G-K formula. Second, the motion simulation of the two modular structures is carried out by using Adams dynamics simulation software. The simulation results verified the correctness of the DOF analysis. The folding rate of the mechanism is characterized by the ratio of the space volume occupied by the mechanism when fully unfolding and fully folding. The folding rates of the existing non-modular mechanisms and modular mechanisms based on tetrahedral unit are calculated. Finally, the number of DOF and motion pairs, the folding rate of non-modular mechanisms and modular mechanisms are compared and analyzed. The analysis results show that the modular structure based on the 3RR-3URU tetrahedral symmetrical combination unit can achieve a large folding rate, and the number of degree of freedom and motion pairs are also relatively reduced. In addition, fewer types of links are use when forming large antennas. The research results provide a theoretical basis for the design and analysis of such modular truss deployable antenna structures.
[1] GANTES C J. Deployable structures:analysis and design[D]. Athens:National Technical University of Athens, 2001:145-158.
[2] HANAOR A, LEVY R. Evaluation of deployable structures for space enclosures[J]. International Journal of Space Structure, 2001, 16(4):211-229.
[3] PUIG L, BARTON A, RANDO N. A review on large deployable structures for astrophysics missions[J]. Acta Astronaut, 2010, 67(1-2):12-26.
[4] CHEBOTAREV A S, PANTELEEV V A, FEYZULLA N M, et al. Truss-type deployable reflector antenna systems for synthetic aperture radar mounted on a small spacecraft[C]//2014 24th International Crimean Conference Microwave and Telecommunication Technology, 2014:521-522.
[5] 胡飞, 宋燕平, 郑士昆, 等. 空间构架式可展天线研究进展与展望[J]. 宇航学报, 2018, 39(2):111-120. HU F, SONG Y P, ZHENG S K, et al. Advances and trends in space truss deployable antennae[J]. Journal of Astronautics, 2018, 39(2):111-120(in Chinese).
[6] 高慧芳, 刘婧芳, 余跃庆. 一种单自由度对称可展耦合机构的设计[J]. 机械工程学报, 2018, 54(5):62-73. GAO H F, LIU J F, YU Y Q. Design of a 1-DOF symmetrical deployable coupled mechanism[J]. Journal of Mechanical Engineering, 2018, 54(5):62-73(in Chinese).
[7] XU Y, GUAN F L. Structure-electronic synthesis design of deployable truss antenna[J]. Aerospace Science and Technology, 2013, 26(1):259-267.
[8] SATTAR M, WEI C. Analytical kinematics and trajectory planning of large scale hexagonal modular mesh deployable antenna[C]//3rd International Conference on Mechanics and Mechatronics Research, 2016:458-553.
[9] 杨毅, 丁希仑. 四棱锥单元平板式可展开收拢机构的运动特性分析[J]. 航空学报, 2010, 31(6):1257-1265. YANG Y, DING X L. Kinematic analysis of a plane deployable mechanism assembled by four pyramid cells[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(6):1257-1265(in Chinese).
[10] DING X L, YANG Y, DAI J S. Design and kinematic analysis of a novel prism deployable mechanism[J]. Mechanism and Machine Theory, 2013, 63:35-49.
[11] 杨毅, 丁希仑. 基于空间多面体向心机构的伸展臂设计研究[J]. 机械工程学报, 2011, 47(5):26-34. YANG Y, DING X L. Design and analysis of mast based on spatial polyhedral linkages mechanism along radial axes[J]. Journal of Mechanical Engineering, 2011, 47(5):26-34(in Chinese).
[12] 李端玲, 张忠海, 于振. 球面剪叉可展机构的运动特性分析[J]. 机械工程学报, 2013, 49(13):1-7. LI D L, ZHANG Z H, YU Z. Kinematic characteristic analysis of spherical scissors deployable mechanisms[J]. Journal of Mechanical Engineering, 2013, 49(13):1-7(in Chinese).
[13] 许允斗, 刘文兰, 陈亮亮, 等. 构架式可展天线机构自由度分析——拆杆等效法[J]. 航空学报, 2017, 38(9):321-332. XU Y D, LIU W L, CHEN L L, et al. Mobility analysis of a deployable truss-antenna mechanism-Method based on link-demolishing and equivalent idea[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(9):321-332(in Chinese).
[14] CHU Z R, DENG Z Q, QI X Z, et al. Modeling and analysis of a large deployable antenna structure[J]. Acta Astronautica, 2014, 95(1):51-60.
[15] WANG Y, LIU R Q, YANG H, et al. Design and deployment analysis of modular deployable structure for large antennas[J]. Journal of Spacecraft and Rockets, 2015, 52(4):1101-1111.
[16] 田大可. 模块化空间可展开天线支撑桁架设计与实验研究[D]. 哈尔滨:哈尔滨工业大学, 2011:19-94. TIAN D K. Design and experimental research on truss structure for modular space deployable antenna[D]. Harbin:Harbin Institute of Technology, 2011:19-94(in Chinese).
[17] LI B, KONG W G, QI X Z. Modeling and design on modular deployable antenna[M]//Advances in Reconfigurable Mechanisms and Robots II. Springer International Publishing, 2016:1037-1048.
[18] 刘文兰,许允斗,姚建涛,等. 3R-3URU可展单元机构及其在构架式可展天线中的应用[J]. 航空学报,2017,38(11):313-323. LIU W L, XU Y D, YAO J T, et al. Research on the deployable unit 3R-3URU and its application in the deployable truss antenna[J]. Acta Aeronautica et Astronautica Sinica, 2017,38(11):313-323(in Chinese).
[19] 许允斗,刘文兰,陈亮亮,等. 一种新型可展组合单元的自由度与运动学分析[J]. 深空探测学报,2017, 4(4):333-339. XU Y D, LIU W L, CHEN L L, et al. Mobility and kinematic analyses of a novel deployable composite element[J]. Journal of Deep Space Exploration, 2017, 4(4):333-339(in Chinese).
[20] XU Y D, CHEN L L, LIU W L, et al. Type synthesis of the deployable mechanisms for the truss antenna using the method of adding constraint chains[J]. ASME Journal of Mechanisms and Robotics, 2018, 10(4):041002(1-12).
[21] XU Y D, GUO J W,GUO L Y, et al. Design and analysis of a truss deployable antenna mechanism based on a 3UU-3URU unit[J]. Chinese Journal of Aeronautics, 2019, 32(2):2743-2754.
[22] ARROYAVE-TOBON S, TEISSANDIER D, DELOS V. Applying screw theory for summing sets of constraints in geometric tolerancing[J]. Mechanism and Machine Theory, 2017, 112:255-271.
[23] 郭金伟,许允斗,刘文兰,等. 基于四面体单元的新型可展机构自由度分析[J]. 机械工程学报,2019, 55(12):9-18. GUO J W, XU Y D, LIU W L, et al. Mobility analysis of novel deployable mechanism based on tetrahedral element[J]. Journal of Mechanical Engineering, 2019, 55(12):9-18.