电子电气工程与控制

用于离心式作动器的变滑模面滑模控制

  • 汪文涛 ,
  • 刘正江 ,
  • 李新民
展开
  • 中国直升机设计研究所 直升机旋翼动力学重点实验室, 景德镇 333000

收稿日期: 2019-06-11

  修回日期: 2019-06-26

  网络出版日期: 2019-10-11

基金资助

国家"863"计划(2012AA112201)

Variable sliding mode sliding mode controller for centrifugal harmonic force generator

  • WANG Wentao ,
  • LIU Zhengjiang ,
  • LI Xinmin
Expand
  • Science and Technology on Rotorcraft Aeromechanics Key Laboratory, China Helicopter Research and Development Institute, Jingdezhen 333000, China

Received date: 2019-06-11

  Revised date: 2019-06-26

  Online published: 2019-10-11

Supported by

National High-tech Research and Development Program of China(2012AA112201)

摘要

作动器系统是组成直升机结构响应主动控制(ACSR)系统的重要子系统之一,为解决离心式作动器同时实现输出力幅值、相位和频率跟踪以及输出力跟踪误差问题,提出了一种基于滑模变结构控制的变滑模面控制(VSMSMC)方法。首先,根据离心式作动器原理建立了偏心块的输出力方程以及包含参数变化、外部扰动及线性摩擦等不确定因素的永磁同步电机(PMSM)动态方程;然后,通过对离心式作动器输出力控制原理进行分析,结合滑模控制理论的特点,将离心式作动器偏心块相位控制期望信号引入滑模控制的滑模面方程,设计了基于PMSM电流环的变滑模面滑模控制律,并利用李雅普诺夫函数证明了所设计的滑模控制律的可达性和稳定性。最后,在MATLAB/Simulink环境下将所设计控制律应用于离心式作动器输出力控制进行了仿真实验,与现有方法相比,所设计控制律能够较好地同时跟踪期望谐波力的幅值、相位和频率,提高了离心式作动器跟踪精度和离心作动器启动时的输出力跟踪响应速度并具有较好的抗干扰能力。

本文引用格式

汪文涛 , 刘正江 , 李新民 . 用于离心式作动器的变滑模面滑模控制[J]. 航空学报, 2019 , 40(12) : 323210 -323210 . DOI: 10.7527/S1000-6893.2019.23210

Abstract

The actuator is one of the important subsystems that constitute the Active Control of Structural Response (ACSR) system of helicopters. Variable Sliding Mode Sliding Mode Control (VSMSMC) is proposed for achieving the simultaneous tracking of harmonic force amplitude, phase, and frequency, and precision in centrifugal harmonic force generator system. First, harmonic force equation and the Permanent Magnet Synchronous Motor (PMSM) dynamic equation which contains uncertainty factors such as parameter variations, external disturbances, and linear friction are established according to the principle of centrifugal harmonic force generator. Then, by analyzing the control principle of harmonic force and combining the characteristics of SMC, the expectation phase of the centrifugal harmonic force generator is introduced into the sliding mode equation of the SMC, and the VSMSMC is designed base on PMSM. Furthermore, the Lyapunov function is used to prove the accessibility and the stability of the VSMSMC. Finally, the performance of the VSMSMC is verified by simulation in MATLAB/Simulink. Compared with the existing method, the VSMSMC can track the amplitude, phase, and frequency of the desired harmonic force and leads to higher tracking accuracy and higher tracking speed when the centrifugal actuator starts.

参考文献

[1] 刘孝辉, 徐新喜, 白松. 军用直升机振动与噪声控制技术[J]. 直升机技术, 2013, 1(1):67-72. LIU X H, XU X X, BAI S. Vibration and noise control technology on military helicopters[J]. Helicopter Technique, 2013, 1(1):67-72(in Chinese).
[2] 朱青霞. 基于离心式作动器系统的振动主动控制关键技术的研究[D]. 南京:南京航空航天大学, 2017:1-34. ZHU Q X. Study of the key technology of the active vibration control based on a centrifugal actuator system[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2017:1-34(in Chinese).
[3] STAPLE A E, WELLS D M. The development and testing of an active control of structural response system for the EH101 helicopter[C]//Proceedings of the 16th European Rotorcraft Forum, 1990:II I.6.1-III.6.11.
[4] TEAL R S, MCCORVERY D L, MAILOY D. Active vibration suppression for the CH-47D[C]//American Helicopter Society 53rd Annual Forum, 1997:211-219.
[5] MILLOTT T A, ROBE G K, JONATHAN K, et al. Risk reduction flight test of a pre-production active vibration control system for the UH-60M[C]//American Helicopter Society 59th Annual Forum, 2003:496-505.
[6] ROBERT G K, MILLOTT T A. Development and flight testing of the active vibration control system for the Sikorsky S-92[C]//American Helicopter Society 56th Annual Forum, 2000:764-771.
[7] VIGNAL B, KRYSINSKI T. Development and qualification of active vibration control system for the Euro copter EC225/EC725[C]//American Helicopter Society 61st Annual Forum, 2005:96-106.
[8] 陆洋, 顾仲权, 凌爱民. 直升机结构响应主动控制中传感器优选问题研究[J]. 振动与冲击, 2011, 30(6):58-61. LU Y, GU Z Q, LING A M. Optimization selection of sensors in active control of structural response for helicopter[J]. Journal of Vibration and Shock, 2011, 30(6):58-61(in Chinese).
[9] 陆轶, 顾仲权. 直升机结构响应主动控制作动器优化设计研究[J]. 振动与冲击, 2007, 26(3):23-26. LU Y, GU Z Q. Study on optimal design of actuators for active control of structural responses of helicopter[J]. Journal of Vibration and Shock, 2007, 26(3):23-26(in Chinese).
[10] 赵灿峰, 顾仲权. 直升机结构响应自适应控制的频域双LMS法[J]. 振动与冲击, 2010, 29(5):195-198, 250. ZHAO C F, GU Z Q. Dual LMS method in frequency domain for active control of structural responses of a helicopter[J]. Journal of Vibration and Shock, 2010, 29(5):195-198, 250(in Chinese).
[11] 陆洋, 顾仲权, 凌爱民, 等. 直升机结构响应主动控制飞行试验[J]. 振动工程学报, 2012, 25(1):24-29. LU Y, GU Z Q, LING A M, et al. Study on optimal design of actuators for active control of structural responses of helicopter[J]. Journal of Vibration and Shock, 2012, 25(1):24-29(in Chinese).
[12] 陆洋, 顾仲权, 洪亮, 等. 共振型电磁式作动器:中国, ZL201010510209.4[P]. 2011-04-06. LU Y, GU Z Q, HONG L, et al. Resonant electromagnetic actuator:China, ZL201010510209.4[P]. 2011-04-06(in Chinese).
[13] 游小亮. 用于振动主动控制的离心式作动器关键技术研究[D]. 南京:南京航空航天大学, 2013:14-29 YOU X L. Study of the key technology for the centrifugal harmonic force generator used in vibration control[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2013:14-29(in Chinese).
[14] 孙强, 程明, 周鹗, 等. 新型双凸极永磁同步电机调速系统的变参数PI控制[J]. 中国电机工程学报, 2003, 23(6):117-123. SUN Q, CHENG M, ZHOU E, et al. Variable PI control of a novel doubly salient permanent magnet motor drive[J]. Proceedings of the CSEE, 2003, 23(6):117-123(in Chinese).
[15] 张晓光, 赵克, 孙力, 等. 永磁同步电机滑模变结构调速系统新型趋近律控制[J]. 中国电机工程学报, 2011, 31(24):77-82. ZHANG X G, ZHAO K, SUN L, et al. A PMSM sliding mode control system based on a novel reaching law[J]. Proceedings of the CSEE, 2011, 31(24):77-82(in Chinese).
[16] 汪海波, 周波, 方斯琛. 永磁同步电机调速系统的滑模控制[J]. 电工技术学报, 2009, 24(9):71-77. WANG H B, ZHOU B, FANG S C. Sliding mode control for PMSM drive system[J]. Transactions of China Electrotechnical Society, 2009, 24(9):71-77(in Chinese).
[17] CHEOL I B, KIM K H. Robust nonlinear speed control of PM synchronous motor using boundary layer integral sliding mode control technique[J]. IEEE Transactions on Control Systems Technology, 2000, 8(1):47-54.
[18] 赵希梅, 赵久成. 永磁直线同步电机的智能互补滑模控制[J]. 电工技术学报, 2016, 31(23):10-14. ZHAO X M, ZHAO J C. Intelligent complementary sliding mode control for permanent linear synchronous motor[J]. Transactions of China Electrotechnical Society, 2016, 31(23):10-14(in Chinese).
[19] 童克文, 张兴, 张昱, 等. 基于新型趋近律的永磁同步电机滑模变结构控制[J]. 中国电机工程学报, 2008, 28(21):102-106. TONG K W, ZHANG X, ZHANG Y, et al. Sliding mode variable structure control of permanent magnet synchronous machine based on a novel reaching law[J]. Proceedings of the CSEE, 2008, 28(21):102-106(in Chinese).
[20] 李鹏, 郑志强. 非线性积分滑模控制方法[J]. 控制理论与应用, 2011, 28(3):421-426. LI P, ZHENG Z Q. Sliding mode control approach with nonlinear integrator[J]. Control Theory and Application, 2011, 28(3):421-426(in Chinese).
[21] 袁雷. 现代永磁同步电机控制原理及MATLAB仿真[M]. 北京:北京航空航天大学出版社, 2016:3-25. YUAN L. Control principle and MATLAB simulation of modern permanent magnet synchronous motor[M]. Beijing:Beihang University Press, 2016:3-25(in Chinese).
[22] 吴超, 王浩文, 张玉文, 等. 基于LADRC的无人直升机轨迹跟踪[J]. 航空学报, 2015, 36(2):473-483. WU C, WANG H W, ZHANG Y W, et al. LADRC-based trajectory tracking for unmanned helicopter[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2):473-483(in Chinese).
文章导航

/