综述

电子设备故障预测与健康管理技术发展新动态

  • 吕克洪 ,
  • 程先哲 ,
  • 李华康 ,
  • 张勇 ,
  • 邱静 ,
  • 刘冠军
展开
  • 国防科技大学 智能科学学院 装备综合保障技术重点实验室, 长沙 410073

收稿日期: 2019-07-13

  修回日期: 2019-08-12

  网络出版日期: 2019-09-02

基金资助

国家重点研发计划(2016YFF0203400);国家自然科学基金(51605482)

New developments of prognostic and health management technology for electronic equipment

  • LYU Kehong ,
  • CHENG Xianzhe ,
  • LI Huakang ,
  • ZHANG Yong ,
  • QIU Jing ,
  • LIU Guanjun
Expand
  • Science and Technology on Integrated Logistics Support Laboratory, School of Intelligence Science, National University of Defense Technology, Changsha 410073, China

Received date: 2019-07-13

  Revised date: 2019-08-12

  Online published: 2019-09-02

Supported by

National Key R & D Program of China (2016YFF0203400); National Natural Science Foundation of China (51605482)

摘要

电子设备是各类航空、航天等高新技术装备必不可少的重要组成部分。与机械类设备存在明显退化状态征兆不同,电子设备退化状态无明显的外在表现,尚无有效征兆对其状态进行刻画,对其进行故障预测与健康管理存在一定的困难。针对该问题,梳理了电子设备故障预测与健康管理技术的基本概念和内涵,介绍了电子设备故障预测与健康管理技术的国内外研究现状,分析了当前复杂电子设备故障预测与健康管理技术面临的挑战和对策。在此基础上,结合未来复杂电子设备新特点及该领域最新研究进展,从基于间歇故障特征的健康状态表征、面向故障预测与健康管理的测试性设计和多源特征融合的健康状态评估等方面,提出了电子设备故障预测与健康管理技术发展的新方向。

本文引用格式

吕克洪 , 程先哲 , 李华康 , 张勇 , 邱静 , 刘冠军 . 电子设备故障预测与健康管理技术发展新动态[J]. 航空学报, 2019 , 40(11) : 23285 -023285 . DOI: 10.7527/S1000-6893.2019.23285

Abstract

Electronic devices are indispensable parts of all kinds of high-tech equipment in the aerospace field. Different from the obvious degradation characteristic of mechanic equipment, there is no obvious external manifestation of the degradation state of electronic equipment. There is no effective sign to characterize the state, and there are certain difficulties in fault prediction and health management of the equipment. To overcome this problem, this paper distinguishes the basic concepts and connotations, introduces the latest research trends home and abroad, and analyzes the current challenges and countermeasures in prognostic and health management of electronic equipment. The new characteristics of future complex electronic equipment and the latest research progress in this field are discussed. Three new development directions for prognostic and health management technology for electronic equipment are proposed, including health state assessment based on intermittent fault characteristics, testability design for prognostic and health management, and health state prediction based on multi-source information.

参考文献

[1] 曾声奎, PECHT M G, 吴际. 故障预测与健康管理(PHM)技术的现状与发展[J]. 航空学报, 2005, 26(5):626-632. ZENG S K, PECHT M G, WU J. Status and perspectives of prognostics and health management technologies[J]. Acta Aeronautica et Astronautica Sinica, 2005, 26(5):626-632(in Chinese).
[2] 彭宇, 刘大同, 彭喜元. 故障预测与健康管理技术综述[J]. 电子测量与仪器学报, 2010, 24(1):1-9. PENG Y, LIU D T, PENG X Y. A review:Prognostics and health management[J]. Journal of Electronic Measurement and Instrument, 2010, 4(1):1-9(in Chinese).
[3] 杨占才, 安茂春, 王红.对发展故障预测和健康管理技术的探讨[J]. 测控技术, 2012,31(1):107-110. YANG Z C, AN M C, WANG H. Exploratory study of developing prognostics and health management technology[J]. Measurement & Control Technology, 2012, 31(1):107-110(in Chinese).
[4] SUN J Z, LI C Y, LIU C, et al. A data-driven health indicator extraction method for aircraft air conditioning system health monitoring[J]. Chinese Journal of Aeronautics, 2019, 32(2):199-206.
[5] HU C H, PEI H, WANG Z Q, et al. A new remaining useful life estimation method for equipment subjected to intervention of imperfect maintenance activities[J]. Chinese Journal of Aeronautics, 2018, 31(3):514-528.
[6] 陈华坤,章卫国, 史静平, 等. 航空电子设备故障预测特征参数提取方法研究[J]. 西北工业大学学报, 2017, 35(3):364-373. CHEN H K, ZHANG W G, SHI J P, et al. Research on fature extraction method for fault prediction of avionics[J]. Journal of Northwestern Polytechnical University, 2017, 35(3):364-373(in Chinese).
[7] 杨军祥, 田泽, 李成文, 等. 新一代航空电子故障预测与健康管理系统综述[J]. 计算机测量与控制, 2014, 22(4):972-978. YANG J X, TIAN Z, LI C W, et al. Summary of new generation avionics prognostics and health management System[J]. Computer Measurement & Control, 2014, 22(4):972-978(in Chinese).
[8] 景博, 黄以峰, 张建业. 航空电子系统故障预测与健康管理技术现状与发展[J]. 空军工程大学学报(自然科学版), 2010, 11(6):1-6. JING B, HUANG Y F, ZHANG J Y. Status and perspectives of prognostics and health management technology of avionics system[J]. Journal of Air Force Engineering University(Natural Science Edition), 2010, 11(6):1-6(in Chinese).
[9] 吕克洪.基于时间应力分析的BIT降虚警与故障预测技术研究[D]. 长沙:国防科学技术大学, 2008. LYU K H. Research on bit false alarm reducing and fault prediction technologies based on time stress analysis[D]. Changsha:National University of Defense Technology, 2008(in Chinese).
[10] LIU D, PANG J, ZHOU J, et al. Prognostics for state of health estimation of lithium-ion batteries based on combination Gaussian process functional regression[J]. Microelectronics Reliability, 2013, 53(6):832-839.
[11] SUSILO D D, WIDODO A, PRAHASTO T, et al. State of health estimation of lithium-ion batteries based on combination of gaussian distribution data and least squares support vector machines regression[C]//Materials Science Forum, 2018, 929:93-102.
[12] JIANG N, CHEN M, XU S, et al. Lifetime evaluation of solder layer in an IGBT module under different temperature levels[C]//2016 IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia). Piscataway, NJ:IEEE Press, 2016:3137-3141.
[13] KWON D, AZARIAN M H, PECHT M. Remaining-life prediction of solder joints using RF impedance analysis and Gaussian process regression[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2015, 5(11):1602-1609.
[14] 徐玉国, 邱静, 刘冠军, 等.基于损伤标尺的电子设备预测维修决策优化[J].航空学报, 2012, 33(11):2093-2105. XU Y G, QIU J, LIU G J, et al. Optimal predictive maintenance decision of electronics based on canaries[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(11):2093-2105(in Chinese).
[15] CHAUHAN P, MATHEW S, OSTERMAN M, et al. In situ interconnect failure prediction using canaries[J]. IEEE Transactions on Device and Materials Reliability, 2014, 14(3):826-832.
[16] HIROHATA K, HISAKUNI Y, OMORI T. Prognostic health monitoring method for fatigue failure of solder joints on printed circuit boards based on a canary circuit[J]. Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems, 2018, 1(3):031004.
[17] BATTIPEDE M, DALLA V M D, MAGGIORE P, et al. Model based analysis of precursors of electromechanical servomechanism failures[C]//AIAA Modeling and Simulation Technologies Conference. Reston,VA:AIAA,2015:2035.
[18] KIRKLAND L V, POMBO T, NELSON K, et al. Avionics health management:searching for the prognostics grail[C]//IEEE Proceedings of Aerospace Conference. Piscataway, NJ:IEEE Press, 2004:3448-3454.
[19] 许丽佳.电子系统的故障预测与健康管理技术研究[D]. 成都:电子科技大学, 2009. XU L J. Research on prognostic and health management technology of electronic system[D]. Chengdu:University of Electronic Science and Technology of China, 2009(in Chinese).
[20] YANG F, HABIBULLAH M S, ZHANG T, et al. Health index-based prognostics for remaining useful life predictions in electrical machines[J]. IEEE Transactions on Industrial Electronics, 2016, 63(4):2633-2644.
[21] MOSALLAM A, MEDJAHER K, ZERHOUNI N. Data-driven prognostic method based on Bayesian approaches for direct remaining useful life prediction[J]. Journal of Intelligent Manufacturing, 2016, 27(5):1037-1048.
[22] POON J, JAIN P, SPANOS C. Fault prognosis for power electronics systems using adaptive parameter identification[J]. IEEE Transactions on Industry Applications, 2017,53(3):2862-2870.
[23] RAMAKRISHNAN A, PECHT M, A life consumption monitoring methodology for electronic systems[J]. IEEE Transactions on Components and Packaging Technologies, 2003, 26(3):625-634.
[24] RENWICK J, KULKARNI C S, CELAYA J R. Analysis of electrolytic capacitor degradation under electrical overstress for prognostic studies[C]//Proceedings of the Annual Conference of the Prognostics and Health Management Society,2015.
[25] RANA Y S, BANERJEE S, SINGH T, et al. Experimental program for physics-of-failure modeling of electrolytic capacitors towards prognostics and health management[J]. Life Cycle Reliability and Safety Engineering, 2017, 6(3):179-185.
[26] LIAO L, KÖTTIG F. A hybrid framework combining data-driven and model-based methods for system remaining useful life prediction[J]. Applied Soft Computing, 2016, 44:191-199.
[27] VASAN A, BING L, PECHT M. Diagnostics and prognostics method for analog electronic circuits[J]. IEEE Transactions on Industrial Electronics, 2013, 60(11):5277-5291.
[28] XU D, SUI S B, ZHANG W, et al. RUL prediction of electronic controller based on multiscale characteristic analysis[J]. Mechanical Systems and Signal Processing, 2018, 113:253-270.
[29] CUI Y, SHI J, WANG Z. Quantum assimilation-based state-of-health assessment and remaining useful life estimation for electronic systems[J]. IEEE Transactions on Industrial Electronics, 2015, 63(4):2379-2390.
[30] HU Y, SHI P, LI H. Health condition assessment of base-Plate solder for multi-Chip IGBT module in wind power converter[J].IEEE Access, 2019(7):72134-72142.
[31] VASAN A, PECHT M G. Electronic circuit health estimation through kernel learning[J]. IEEE Transactions on Industrial Electronics, 2017, 65(2):1585-1594.
[32] 薛东风, 叶继坤. 基于HMM的电子设备健康状态评估方法[J]. 现代防御技术, 2013, 41(2):187-191. XUE D F, YE J K. Electronic equipment health assessment methods based on HMM[J]. Modern Defense Technology, 2013, 41(2):187-191(in Chinese).
[33] ZHAO S, MAKIS V, CHEN S, et al. Health evaluation method for degrading systems subject to dependent competing risks[J]. Journal of Systems Engineering and Electronics, 2018, 29(2):436-444.
[34] 和麟, 雷偲凡, 刘洋. 基于距离度量和健康指数的电子设备健康评估方法[J]. 计算机测量与控制, 2017(10):294-297. HE L, LEI F S, LIU Y, et al. A health evaluation method of electronic equipments based on multi-parameter distance measurement and health index[J]. Computer Measurement & Control, 2017(10):294-297(in Chinese).
[35] MONTANARI G C, HEBNER R, MORSHUIS P. An approach to insulation condition monitoring and life assessment in emerging electrical environments[J]. IEEE Transactions on Power Delivery, 2019, 34(4):1357-1364.
[36] 沈亲沐.振动环境中电连接器间歇故障机理与诊断技术研究[D].长沙:国防科技大学, 2016. SHEN Q M. Research on mechanism and diagnosis of electrical connector intermittent fault under vibration[D]. Changsha:National University of Defense Technology, 2016(in Chinese).
[37] 李乾. 电连接器间歇故障复现与评估关键技术研究[D].长沙:国防科技大学, 2018. LI Q. Research on key technologies of intermittent failures duplication and evaluation for electrical connectors[D]. Changsha:National University of Defense Technology, 2018(in Chinese).
[38] WANG W, PECHT M. Economic analysis of canary-based prognostics and health management[J]. IEEE Transactions on Industrial Electronics. 2011, 58(7):3077-3089.
[39] SCANFF E, FELDMAN K L, GHELAM S, et al. Life cycle cost impact of using prognostic health management (PHM) for helicopter avionics[J]. Microelectronics Reliability. 2007, 47(12):1857-1864.
[40] FELDMAN K, JAZOULI T, SANDBORN P A. A methodology for determining the return on investment associated with prognostics and health management[J]. IEEE Transactions on Reliability, 2009, 58(2):305-316.
[41] VICHARE N M, PECHT M G. Prognostics and health management of electronics[J]. IEEE Transactions on Components and Packaging Technologies, 2006, 29(1):222-229.
[42] 年夫顺. 关于故障预测与健康管理技术的几点认识[J]. 仪器仪表学报, 2018, 39(8):1-14. NIAN F S. Viewpoints about the prognostic and health management[J]. Chinese Journal of Scientific Instrument, 2018, 39(8):1-14(in Chinese).
[43] 韩国泰. 航空电子的故障预测与健康管理技术[J]. 航空电子技术, 2009, 40(1):30-38. HAN G T. Prognostics and health management of avionics[J]. Avionics Technology, 2009, 40(1):30-38(in Chinese).
[44] 宋磊. 军用电子设备预测与健康管理体系结构及关键技术研究[D]. 成都:电子科技大学,2018. SONG L. Research on PHM Architecture and key technology of military electronic equipment[D]. Chengdu:University of Electronic Science and Technology of China, 2018(in Chinese).
[45] ANDERSON K. Focused technology transition:intermittent fault detection & isolation systemTM (IFDISTM)[C]//DoD Maintenance Symposium, 2014.
[46] CORRECHER A, GARCIA E, MORANT F, et al. Intermittent failure dynamics characterization[J]. IEEE Transactions on Reliability, 2012, 61(3):649-658.
[47] ABREU R, ZOETEWEIJ P, GEMUND A J C V. A new bayesian approach to multiple intermittent fault diagnosis[C]//International Jont Conference on Artifical Intelligence, 2009.
[48] 周东华, 史建涛, 何潇. 动态系统间歇故障诊断技术综述[J].自动化学报, 2014, 40(2):161-171. ZHOU D H, SHI J T,HE X. Review of intermittent fault diagnosis techniques for dynamic systems[J]. Acta Automatica Sinica, 2014, 40(2):161-171(in Chinese).
[49] ZHOU D H, ZHAO Y H, WANG Z D. Review on diagnosis techniques for intermittent faults in dynamic systems[J]. IEEE Transactions on Industrial Electronics, 2019(99):1-1.
[50] YAN R, HE X,WANG Z, et al. Detection, isolation and diagnosability of intermittent fault in stochastic systems[J]. International Journal of Control, 2018, 91(2):480-494.
[51] 鄢镕易, 何潇, 周东华. 一类存在参数摄动的线性随机系统的鲁棒间歇故障诊断方法[J].自动化学报, 2016, 42(7):1004-1013. YAN R Y, HE X, ZHOU D H. Robust diagnosis of intermittent faults for linear stochastic systems subject to time-varying perturbations[J]. Acta Automatica Sinica, 2016, 42(7):1004-1013(in Chinese).
[52] LIANG J R, FENG H, DU X. Intermittent fault diagnosability of interconnection networks[J]. Journal of Computer Science &Technology, 2017, 32(6):1279-1287.
[53] 刘艳芳, 吕江花, 马世龙,等. 航电系统并行检测过程与检测设备解耦方法[J]. 航空学报, 2019, 40(8):322818. LIU Y F, LYU J H, MA S L, et al. Decoupling method for test process and test devices in parallel testing of avionics systems[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(8):322818(in Chinese).
[54] SIMON D L, GARG S. A systematic approach to sensor selection for aircraft engine health estimation:NASA/TM-215839[R].Washington, D.C.:NASA, 2009.
[55] 王宝龙, 黄考利. 面向生命周期的复杂电子装备测试性建模[J]. 仪器仪表学报, 2006, 27(6):1230-1232. WANG B L, HUANG K L. Testability modeling of complicated electronic equipments facing to life cycle[J]. Chinese Journal of Scientific Instrument, 2006, 27(6):1230-1232(in Chinese).
[56] 张亮, 张凤鸣. 装备健康管理中的传感器优化配置问题研究[J].传感器与微系统, 2008, 27(7):18-20. ZHANG L, ZHANG F M. Research on optimal sensor placement in equipment health management[J]. Transducer and Microsystem Technologies, 2008, 27(7):18-20(in Chinese).
[57] 杨述明. 面向装备健康管理的可测性技术研究[D].长沙:国防科技大学, 2012. YANG S M. Research on testability technology for equipment health management[D]. Changsha:National University of Defense Technology, 2012(in Chinese).
[58] 谭晓栋. 面向装备健康状态评估的可测性设计关键技术研究[D].长沙:国防科技大学, 2013. TAN X D. Research on key technologies of design for testability for health state evaluation[D]. Changsha:National University of Defense Technology, 2013(in Chinese).
文章导航

/