电子电气工程与控制

考虑驾驶仪动态特性的固定时间收敛制导律

  • 张宽桥 ,
  • 杨锁昌 ,
  • 李宝晨 ,
  • 刘畅
展开
  • 1. 陆军工程大学石家庄校区 导弹工程系, 石家庄 050003;
    2. 陆军工程大学 科研学术处, 南京 210000

收稿日期: 2019-06-19

  修回日期: 2019-07-15

  网络出版日期: 2019-09-02

Fixed-time convergent guidance law considering autopilot dynamics

  • ZHANG Kuanqiao ,
  • YANG Suochang ,
  • LI Baochen ,
  • LIU Chang
Expand
  • 1. Department of Missile Engineering, Shijiazhuang Campus of Army Engineering University, Shijiazhuang 050003, China;
    2. Department of Scientific Research, Army Engineering University, Nanjing 210000, China

Received date: 2019-06-19

  Revised date: 2019-07-15

  Online published: 2019-09-02

摘要

针对打击机动目标的制导问题,设计了一种同时考虑攻击角度约束、自动驾驶仪动态特性和固定时间收敛的新型制导律。首先,基于非奇异终端滑模控制和固定时间稳定性理论,采用反步递推方法设计制导律。在制导律设计过程中,设计了一种固定时间收敛的非奇异终端滑模面,基于固定时间控制和滑模控制,设计虚拟控制律,构造一种非线性一阶滤波器解决传统反步设计中的"微分膨胀"问题。基于超螺旋算法和固定时间稳定性理论,设计了一种固定时间收敛的滑模干扰观测器,用于估计目标机动等干扰。然后,基于Lyapunov稳定性理论,对制导律的固定时间稳定性进行了证明,并给出了收敛时间的表达式。最后,通过仿真分析,验证了所提制导律的有效性,和现有制导律相比,所提制导律具有较高的制导精度和角度约束精度、较快的系统收敛速度以及较少的能量消耗。

本文引用格式

张宽桥 , 杨锁昌 , 李宝晨 , 刘畅 . 考虑驾驶仪动态特性的固定时间收敛制导律[J]. 航空学报, 2019 , 40(11) : 323227 -323227 . DOI: 10.7527/S1000-6893.2019.23227

Abstract

A new guidance law considering the impact angle constraint, autopilot dynamic characteristics, and fixed-time convergence is designed for the guidance problem of attacking maneuvering targets. First, based on nonsingular terminal sliding mode control and fixed-time stability theory, the backstepping method is used to design the guidance law. In the process of the design, a nonsingular terminal sliding mode surface with fixed-time convergence is designed. Based on fixed-time control and sliding mode control, the virtual control law is designed and a nonlinear first-order filter is constructed to solve the problem of "differential expansion" in the traditional backstepping design. Based on the super-twisting algorithm and fixed-time stability theory, a fixed-time convergence sliding mode disturbance observer is designed to estimate the target maneuvering and other interferences. Then, based on the Lyapunov stability theory, the fixed-time stability of the guidance law is proved, and the expression for convergence time is given. Finally, the effectiveness of the proposed guidance law is verified by simulation analysis. Compared with the existing guidance laws, the proposed guidance law has higher guidance precision and angle constraint accuracy, faster system convergence speed, and less energy consumption.

参考文献

[1] SONG J M, ZHANG T Q. Passive homing missile's variable structure proportional navigation with terminal angular constraint[J]. Chinese Journal of Aeronautics, 2001, 14(2):83-87.
[2] KUMAR S R, RAO S, GHOSE D. Sliding-mode guidance and control for all-aspect interceptors with terminal angle constraints[J]. Journal of Guidance, Control and Dynamics, 2012, 35(4):1230-1246.
[3] ZHOU D, SUN S, TEO K L. Guidance law with finite time convergence[J]. Journal of Guidance, Control and Dynamics, 2009, 32(6):1838-1846.
[4] ZHANG Y X, SUN M W, CHEN Z Q. Finite-time convergent guidance law with impact angle constraint based on sliding-mode control[J]. Nonlinear Dynamic, 2012, 70(1):619-625.
[5] YU X H, MAN Z H. Fast terminal sliding-mode control design for nonlinear dynamical systems[J]. IEEE Transactions on Circuits and Systems:Fundamental Theory and Applications, 2002, 49(2):261-264.
[6] SONG J, SONG S, GUO Y, et al. Nonlinear disturbance observer based fast terminal sliding mode guidance with impact angle constraints[J]. International Journal of Innovative Computing, Information and Control, 2015, 11(3):787-802.
[7] ZONG Q, ZHAO Z S, ZHANG J. Higher order sliding mode control with self-tuning law based on integral sliding mode[J]. IET Control Theory and Application, 2008, 4(7):1282-1289.
[8] SONG J H, SONG S M. Three-dimensional guidance law based on adaptive integral sliding mode control[J]. Chinese Journal of Aeronautics, 2016, 29(1):202-214.
[9] FENG Y, YU X H. Non-singular terminal sliding mode control of rigid manipulators[J]. Automatica, 2002, 38(12):2159-2167.
[10] SONG J H, SONG S M, ZHOU H B. Adaptive nonsingular fast terminal sliding mode guidance law with impact angle constraints[J]. International Journal of Control, Automation and Systems, 2016, 14(1):99-114.
[11] ZHANG X J, LIU M Y, LI Y. Nonsingular terminal sliding-mode-based guidance law design with impact angle constraints[J]. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 2019, 43(1):47-54.
[12] POLYAKOV A. Nonlinear feedback design for fixed-time stabilization of linear control systems[J]. IEEE Transactions on Automatic Control, 2012, 57(8):2106-2110.
[13] LI H, CAI Y. On SFTSM control with fixed-time convergence[J]. IET Control Theory & Applications, 2017, 11(6):766-773.
[14] ZHANG L, WEI C Z, WU R, et al. Fixed-time extended state observer based non-singular fast terminal sliding mode control for a VTVL reusable launch vehicle[J]. Aerospace Science and Technology, 2018, 82-83:70-79.
[15] 熊少锋, 王卫红, 王森. 带攻击角度约束的非奇异快速终端滑模制导律[J]. 控制理论与应用, 2014, 31(3):269-278. XIONG S F, WANG W H, WANG S. Nonsingular fast terminal sliding-mode guidance with intercept angle constraint[J]. Control Theory & Applications, 2014, 31(3):269-278(in Chinese).
[16] HE S M, LIN D F, WANG J. Continuous second-order sliding mode based impact angle guidance law[J]. Aerospace Science and Technology, 2015, 41:199-208.
[17] ZHANG N, GAI W D, ZHONG M Y, et al. A fast finite-time convergent guidance law with nonlinear disturbance observer for unmanned aerial vehicles collision avoidance[J]. Aerospace Science and Technology, 2019, 86:204-214.
[18] ZHANG H, HAN J, LUO C, et al. Fault-tolerant control of a nonlinear system based on generalized fuzzy hyperbolic model and adaptive disturbance observer[J]. IEEE Transactions on Systems Man Cybernetics-Systems, 2017, 47(8):2289-2300.
[19] YANG Z J. Robust control of nonlinear semi-strict feedback systems using finite-time disturbance observers[J]. International Journal of Robust and Nonlinear Control, 2017, 27(17):3582-3603.
[20] GONZALEZ A, BALAGUER V, GARCIA P, et al. Gain-scheduled predictive extended state observer for time-varying delays systems with mismatched disturbance[J]. ISA Transactions, 2019, 84:206-213.
[21] 熊少锋, 王卫红, 刘晓东, 等. 考虑导弹自动驾驶仪动态特性的带攻击角度约束制导律[J]. 控制与决策, 2015, 30(4):585-592. XIONG S F, WANG W H, LIU X D, et al. Impact angle guidance law considering missile's dynamics of autopilot[J]. Control and Decision, 2015, 30(4):585-592(in Chinese).
[22] SUN S, ZHOU D, HOU W T. A guidance law with finite time convergence accounting for autopilot lag[J]. Aerospace Science and Technology, 2013, 25(1):132-137.
[23] ZHOU D, QU P P, SUN S. A guidance law with terminal impact angle constraint accounting for missile autopilot[J]. Journal of Dynamic Systems, Measurement, and Control, 2013, 135(5):051009.
[24] QU P P, ZHOU D. A dimension reduction observer-based guidance law accounting for dynamics of missile autopilot[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2013, 227(7):1114-1121.
[25] HE S M, LIN D F, WANG J. Robust terminal angle constraint guidance law with autopilot lag for intercepting maneuvering targets[J]. Nonlinear Dynamics, 2015, 81(1-2):881-892.
[26] MEHDI G, IMAN M, AHMAD R V. Finite-time convergent guidance law based on integral backstepping control[J]. Aerospace Science and Technology, 2014, 39:370-376.
[27] ZHOU A M, Finite-time output feedback attitude tracking control for rigid spacecraft[J]. IEEE Transactions on Control Systems Technology, 2014, 22(1):338-345.
[28] LI B, HU Q L, YU Y B, et al. Observer-based fault-tolerant attitude control for rigid spacecraft[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(5):2572-2582.
[29] NI J K, LIU L, LIU C X, et al. Fixed-time dynamic surface high-order sliding mode control for chaotic oscillation in power system[J]. Nonlinear Dynamics, 2016, 86(1):401-420.
[30] WANG X, GUO J, TANG S J, et al. Fixed-time disturbance observer based fixed-time back-stepping control for an air-breathing hypersonic vehicle[J]. ISA Transactions, 2019, 88:233-245.
[31] JIANG B Y. HU Q L, FRISWELL M I. Fixed-time attitude control for rigid spacecraft with actuator saturation and faults[J]. IEEE Transactions on Control Systems Technology, 2016, 24(5):1892-1898.
[32] BASIN M, PANATHULA C B, SHTESSEL Y. Multivariable continuous fixed-time second-order sliding mode control:design and convergence time estimation[J]. IET Control Theory & Applications, 2017, 11(8):1104-1111.
[33] HALL C E, SHTESSEL Y B. Sliding mode disturbance observer-based control for a reusable launch vehicle[J]. Journal of Guidance, Control and Dynamics, 2006, 29(6):1315-1328.
[34] SHTESSEL Y, EDWARDS C, FRIDMAN L, et al. Sliding mode control and observation[M]. New York:Springer, 2014:155-158.
[35] UTKIN V. On convergence time and disturbance rejection of super-twisting control[J]. IEEE Transactions on Automatic Control, 2013, 58(8):2013-2017.
[36] SWAROOP D, HEDRICK J K, YIP P P, et al. Dynamic surface control for a class of nonlinear systems[J]. IEEE Transactions on Automatic Control, 2000, 45(10):1893-1899.
文章导航

/