平动点,尤其是共线平动点轨道在未来深空探测活动中具有重要的应用价值,但由于共线平动点轨道不稳定,运行在其上的航天器在无控情况下将很快偏离标称轨道,因此在实际任务中,轨道维持必不可少。针对地月系L2点附近的Halo轨道维持问题,首先在圆型限制性三体模型下,利用Richardson三阶近似解析解、微分修正以及打靶法获得了用于维持控制的标称轨道;然后设计了基于特征模型理论的黄金分割控制器用于速度跟踪以及PD控制器用于位置跟踪;最后分别在圆型限制性三体模型和双圆限制性四体模型下进行了仿真分析。结果表明:在两种模型下,位置和速度的跟踪精度分别优于100 m和0.003 m/s,但双圆限制性四体模型下所需总的速度增量比圆型限制性三体模型下所需总的速度增量高一个数量级。
Orbits around libration points have a key value in future deep space explorations. However, due to the instability of libration points, explorers that are running on the orbits around them will, if without control, deviate at a high speed. As a result, station-keeping is essential in practical missions. To solve the station-keeping problem of the periodical Halo orbits around Earth-Moon L2 point, a baseline orbit was obtained through Richardson three-order analytical solution, differential correction, and target shooting strategy. Then, a characteristic model-based golden-section controller was designed for velocity tracking and a PD controller was designed for position tracking. Finally, simulations were conducted under restricted three-body model and bicircular restricted four-body model. Results show that, under both circumstances, the tracking accuracy was better than 100 m in position and 0.003 m/s in velocity, while the controller consumption of bicircular restricted four-body model was an order of magnitude higher than that of the restricted three-body model.
[1] 徐明. 平动点轨道的动力学与控制研究综述[J]. 宇航学报, 2009, 30(4):1299-1313. XU M. Overview of orbital dynamics and control for libration point orbits[J]. Journal of Astronautics, 2009, 30(4):1299-1313(in Chinese).
[2] 孟云鹤, 张跃东, 陈琪锋. 平动点航天器动力学与控制[M]. 北京:科学出版社, 2016:1-2. MENG Y H, ZHANG Y D, CHEN Q F. Dynamics and control of spacecraft near libration points[M]. Beijing:Science Press, 2016:1-2(in Chinese).
[3] 雷汉伦. 平动点,不变流形及低能轨道[D]. 南京:南京大学, 2015:1-2. LEI H L. Equilibrium point, invariant manifold and low-energy trajectory[D]. Nanjing:Nanjing University, 2015:1-2(in Chinese).
[4] 钱霙婧. 地月空间拟周期轨道上航天器自主导航与轨道保持研究[D]. 哈尔滨:哈尔滨工业大学, 2013:1-14. QIAN Y J. Research on autonomous navigation and station-keeping for quasi-periodic orbit in the Earth-Moon system[D]. Harbin:Harbin Institute of Technology, 2013:1-14(in Chinese).
[5] 侯锡云, 刘林. 共线平动点的动力学特征及在深空探测中的应用[J]. 宇航学报, 2008, 29(3):736-747. HOU X Y, LIU L. The dynamics and applications of the collinear libration points in deep space exploration[J]. Journal of Astronautics, 2008, 29(3):736-747(in Chinese).
[6] XU M, LIANG Y, REN K. Survey on advances in orbital dynamics and control for libration point orbits[J]. Progress in Aerospace Sciences, 2016, 82:24-35.
[7] 周天帅, 李东, 陈新民, 等. 国外日-地动平衡点卫星应用及转移轨道实现方式[J]. 导弹与航天运载技术, 2005, 5:30-34. ZHOU T S, LI D, CHEN X M, et al. Application of foreign spacecrafts of Sun-Earth libration points and manners of transfer trajectory[J]. Missiles and Space Vehicles, 2004, 5:30-34(in Chinese).
[8] FARQUHAR R W. The control and use of libration-point satellites[R].Washington D.C.:NASA, 1970.
[9] LO M W. The interplanetary superhighway and the orgins program[C]//Proceedings of IEEE Aerospace Conference. Piscataway, NJ:IEEE Press, 2002.
[10] 李明涛. 共线平动点任务节能轨道设计与优化[D]. 北京:中国科学院, 2010:2-3. LI M T. Low energy trajectory design and optimization for collinear libration points missions[D]. Beijing:Chinese Academy of Sciences, 2010:2-3(in Chinese).
[11] SHIROBOKOV M, TROFIMOV S, OVCHINNIKOV M. Survey of station-keeping techniques for libration point orbtis[J]. Journal of Guidance, Control and Dynamics, 2017, 40(5):1085-1105.
[12] SIMO C, GÓMEZ G, LLIBRE J, et al. Station keeping of a quasiperiodic halo orbit using invariant manifolds[C]//Proceedings of the Second International Symposium on Spacecraft Flight Dynamics. Darmstadt:ESA, 1986.
[13] BREAKWELL J V, KAMEL A A, RATNER M J. Station-keeping for a translunar communication station[J]. Celestial Mechanics, 1974, 10:357-373.
[14] HOWELL K C, PERNICKA H J. Station-keeping method for libration point trajectories[J]. Journal of Guidance, Control and Dynamics, 1993, 16(1):151-159.
[15] LIAN Y, GOMEZ G, MASDEMONT J J, et al. Station-keeping of real Earth-Moon libration point orbits using discrete-time sliding mode control[J]. Communications in Nonlinear Science and Numerical Simulation, 2014, 19(10):3792-3807.
[16] NAZARI M, ANTHONY W, BUTCHER E A. Continuous thrust stationkeeping in Earth-Moon L1 halo orbits based on LQR control and Floquet theory[C]//AIAA/AAS Astrodynamics Specialist Conference. Reston, VA:AIAA, 2014.
[17] 徐明, 徐世杰. Halo轨道维持的线性周期控制策略[J]. 航天控制, 2008, 26(3):13-18. XU M, XU S J. Station-keeping strategy of halo orbit in linear periodic control[J]. Aerospace Control, 2008, 26(3):13-18(in Chinese).
[18] 孟斌. 基于特征模型的高超声速飞行器自适应控制研究进展[J]. 控制理论与应用, 2014, 31(12):1640-1649. MENG B. Review of the characteristic model-based hypersonic flight vehicles adaptive control[J]. Control Theory & Applications, 2014, 31(12):1640-1649(in Chinese).
[19] 吴宏鑫, 胡军, 解永春. 基于特征模型的智能自适应控制[M]. 北京:中国科学技术出版社, 2009:1-2. WU H X, HU J, XIE Y C. Characteristic model-based intelligent adaptive control[M]. Beijing:China Science and Technology Press, 2009:1-2(in Chinese).
[20] RICHARDSON D L. Analytic construction of periodic orbits about the collinear points[J]. Celestial Mechanics, 1980, 22:241-253.
[21] POPESCU M, CARDOS V. The domain of initial conditions for the class of three-dimensional halo periodic orbits[J]. Acta Astronautica, 1995, 36(4):193-196.
[22] 齐春子, 吴宏鑫, 吕振铎. 多变量全系数自适应控制系统稳定性的研究[J]. 控制理论与应用, 2000, 17(4):489-494. QI C Z, WU H X, LV Z D. Study on the stability of multivariable all-coefficient adaptive control system[J]. Control Theory & Applications, 2000, 17(4):489-494(in Chinese).
[23] SUN D. Stability analysis of golden-section adaptive control systems based on the characteristic model[J]. Science China:Information Sciences, 2017, 60(9):092205.
[24] LI C, LIU G, HUANG J, et al. Station-keeping control for collinear libration point orbits using NMPC[C]//AAS/AIAA Astrodynamics Specialist Conference. Reston, VA:AIAA, 2015.