流体力学与飞行力学

流场可压缩性对涡相互作用影响的数值研究

  • 郑忠华 ,
  • 范周琴 ,
  • 王子昂 ,
  • 余彬 ,
  • 张斌
展开
  • 1. 中国空气动力研究与发展中心 超高速空气动力研究所 高超声速冲压发动机技术重点实验室, 绵阳 621000;
    2. 上海交通大学 航空航天学院, 上海 200240

收稿日期: 2019-07-19

  修回日期: 2019-08-13

  网络出版日期: 2019-08-29

基金资助

国家自然科学基金(51676203)

Numerical study of compressibility effect on flowfield evolution of vortex interaction

  • ZHENG Zhonghua ,
  • FAN Zhouqin ,
  • WANG Ziang ,
  • YU Bin ,
  • ZHANG Bin
Expand
  • 1. Science and Technology on Scramjet Laboratory, Hypervelocity Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China;
    2. School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2019-07-19

  Revised date: 2019-08-13

  Online published: 2019-08-29

Supported by

National Natural Science Foundation of China (51676203)

摘要

涡相互作用作为冲压发动机喷注装置的典型抽象流动现象,研究其可压缩性影响对于认识包含化学反应的真实燃料喷射场具有一定基础理论价值。基于经过数值验证的可压缩Navier-Stokes算法与压力泊松方程初始条件设置方法研究流场可压缩性对涡相互作用演化过程的影响。结果表明,以较高涡旋马赫数表征的可压缩性在改变涡对形态的同时,具有延缓涡旋相互靠近,迟滞融合进程的作用。关于涡对系统开始融合的临界条件,可压缩相互作用开始的临界展弦比与无量纲时间相比于低速涡对明显提高。为在无量纲时间意义下统一不同马赫数涡对相互作用的进程,从涡心密度随时间变化规律出发在不可压涡对特征时间的基础上,初步构建了考虑可压缩性的时间尺度修正关系。

本文引用格式

郑忠华 , 范周琴 , 王子昂 , 余彬 , 张斌 . 流场可压缩性对涡相互作用影响的数值研究[J]. 航空学报, 2020 , 41(2) : 123295 -123295 . DOI: 10.7527/S1000-6893.2019.23295

Abstract

As a typical flow model of ramjet device, the study on the influence of compressibility in vortex interaction has fundamental value for understanding the actual fuel injection with chemical reactions. Based on the validated compressible Navier-Stokes solver and initial condition setup (pressure Poisson equation), the influence of compressibility on the evolution process of vortex interaction is investigated in this paper. The results show that the compressibility characterized by higher vortex Mach number changes the vortex pair morphology and delays the closing of the vortex rings, slowing down the merging process. With regard to the critical condition of vortex merging, the critical aspect ratio and the dimensionless time when the interaction begins are significantly higher than those in low velocity vortex pairs. In order to unify the interaction processes among the vortex pairs of different Mach number in the sense of dimensionless time, a compressible timescale correction relationship is constructed based on the temporal evolution of local density in vortex centre.

参考文献

[1] ROSSOW V J. Convective merging of vortex cores in lift generated wakes[J]. Journal of Aircraft, 1977, 14(3):283-290.
[2] 朱睿,刘锦生,刘志荣,等.新概念机翼尾流特性实验[J].航空学报,2017,38(4):120250. ZHU R, LIU J S, LIU Z R, et al. Experiment on a new concept wing layout with alleviated wake vortex[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(4):120250(in Chinese).
[3] WILLIAMSON C H. The physical mechanism for vortex merging[J]. Journal of Fluid Mechanics, 2003, 475:41-77.
[4] BRANDT L K, NOMURA K K. The physics of vortex merger:Further insight[J]. Physics of Fluids, 2006, 18(5):051701.
[5] SAFFMAN P G, SZETO R. Equilibrium shapes of a pair of equal uniform vortices[J]. Physics of Fluids, 1980, 23(12):2339.
[6] MELANDER M V, ZABUSKY N J, MCWILLIAMS J C. Symmetric vortex merger in two dimensions-Causes and conditions[J]. Journal of Fluid Mechanics, 1988, 195(1):303-340.
[7] MEUNIER P, EHRENSTEIN U, LEWEKE T, et al. A merging criterion for two-dimensional co-rotating vortices[J]. Physics of Fluids, 2002, 14(8):2757.
[8] MELANDER M V, MCWILLIAMS J C. Axisymmetrization and vorticity-gradient intensification of an isolated two-dimensional vortex through filamentation[J]. Journal of Fluid Mechanics, 1987, 178:137-159.
[9] LEWEKE T, LE DIZES S, WILLIAMSON C H K. Dynamics and instabilities of vortex pairs[J]. Annual Review of Fluid Mechanics, 2016, 48:507-541.
[10] URZAY J. Supersonic combustion in air-breathing propulsion systems for hypersonic flight[J]. Annual Review of Fluid Mechanics, 2018, 50:593-627.
[11] 陈钱, 张会强, 王兵,等. 超声速混合层燃烧研究进展[J]. 航空学报, 2017,38(1):020036. CHEN Q, ZHANG H Q, WANG B, et al. Research progress of combustion in supersonic mixing layers[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(1):020036(in Chinese).
[12] VERGINE F, MADDALENA L. Study of two supersonic streamwise vortex interactions in a Mach 2.5 flow:Merging and no merging configurations[J]. Physics of Fluids, 2015, 27(7):076102.
[13] 王晓栋,宋文艳. 燃料引射方式对超燃冲压燃烧室混合及燃烧效率的影响[J].航空学报,2004, 25(6):556-559. WANG X D, SONG W Y. Effects of fuel injection scheme on the mixing and combustion efficiency of a scramjet combustor[J]. Acta Aeronautica et Astronautica Sinica, 2004, 25(6):556-559(in Chinese).
[14] YUAN L, TANG T. Resolving the shock-induced combustion by an adaptive mesh redistribution method[J]. Journal of Computational Physics, 2007, 224(2):587-600.
[15] LIU X D, OSHER S, CHAN T. Weighted essentially non-oscillatory schemes[J]. Journal of Computational Physics, 1994, 115(1):200-212.
[16] VIRK D, HUSSAIN F. Influence of initial conditions on compressible vorticity dynamics[J]. Theoretical and Computational Fluid Dynamics, 1993, 5(6):309-334.
[17] HARLOW F H, WELCH J E. Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface[J]. Physics of Fluids, 1965, 8(12):2182-2189.
[18] MITCHELL B E, LELE S K, MOIN P. Direct computation of the sound from a compressible co-rotating vortex pair[J]. Journal of Fluid Mechanics, 1995, 285:181-202.
[19] 田振夫. 泊松方程的优化有限差分方法[J]. 嘉应学院学报, 1996, 1(1):6-9. TIAN Z F. Optimal finite difference method for Poisson equation[J]. Journal of Jiaying University, 1996, 1(1):6-9.
[20] HIRSH R S. Higher order accurate difference solutions of fluid mechanics problems by a compact differencing technique[J]. Journal of Computational Physics, 1975, 19(1):90-109.
[21] NYBELEN L, PAOLI R. Direct and large-eddy simulations of merging in corotating vortex system[J]. AIAA Journal, 2009, 47(1):157-167.
[22] MEUNIER P, LEWEKE T. Three-dimensional instability during vortex merging[J]. Physics of Fluids, 2001, 13(10):2747-2750.
[23] SANDHAM N D. The effect of compressibility on vortex pairing[J]. Physics of Fluids, 1994, 6(2):1063-1072.
[24] PAPAMOSCHOU D, ROSHKO A. The compressible turbulent shear layer:An experimental study[J]. Journal of Fluid Mechanics, 1988, 197:453-477.
[25] DAVIDSON P A. Turbulence:An introduction for scientists and engineers[M]. Oxford:Oxford University Press, 2015.
[26] CHEN H, ZHANG B, LIU H. Non-Rankine-Hugoniot shock zone of Mach reflection in hypersonic rarefied flows[J]. Journal of Spacecraft and Rockets, 2016, 53(4):619-628.
文章导航

/