固体力学与飞行器总体设计

基于核心零部件聚类的飞机现场可更换单元划分

  • 胡启先 ,
  • 王卓健 ,
  • 鱼欢
展开
  • 1. 空军工程大学 航空工程学院, 西安 710038;
    2. 955596部队, 商丘 476000

收稿日期: 2019-06-25

  修回日期: 2019-07-10

  网络出版日期: 2019-10-11

Partition of line replaceable units in aircraft based on clustering of key components

  • HU Qixian ,
  • WANG Zhuojian ,
  • YU Huan
Expand
  • 1. Aeronautics Engineering College, Air Force Engineering University, Xi'an 710038, China;
    2. 955596 Troops, Shangqiu 476000, China

Received date: 2019-06-25

  Revised date: 2019-07-10

  Online published: 2019-10-11

摘要

为研究军用飞机测试性设计过程中现场可更换单元(LRU)划分工作,以功能独立性和结构独立性为基本原则,以降低飞机维修保障成本和时间为主要目标,设计了一种军用飞机LRU划分方案。方案在首先实现了飞机从整机到零部件的功能结构分层划分基础上,从设备零部件层级出发,以综合重要度作为各零部件的定量化指标,运用帕累托(Pareto)原则筛选出核心零部件。然后基于核心零部件开发了一种LRU划分聚类算法,该算法以军用飞机设计研制阶段、使用保障阶段、退役处置阶段全寿命周期内成本和时间为优化目标构造综合评判因子,实现了非核心零部件与LRU模块之间的聚类组合,得到最优的LRU划分结果。最后以某型军用飞机上蒸发循环制冷装置为例,运用本文设计的方案实现了该装置LRU的划分,并将划分结果与该装置的实际LRU清单进行对比,通过维修保障成本和时间综合评判因子对两种划分结果的优劣性进行分析,得出本文设计方案得到的LRU划分结果对飞机维修保障成本和时间的优化效果较为均衡的结论。

本文引用格式

胡启先 , 王卓健 , 鱼欢 . 基于核心零部件聚类的飞机现场可更换单元划分[J]. 航空学报, 2019 , 40(11) : 223245 -223245 . DOI: 10.7527/S1000-6893.2019.23245

Abstract

In order to study the module partition of Line Replaceable Unit (LRU) in the process of military aircraft testability design, a module partition scheme of LRU for military aircraft is designed based on the principle of reducing the fault location time and fault isolation time in the maintenance and support stage of military aircraft. Firstly, a macro-level initial partition model based on Product Lifecycle Management database is constructed to realize the initial partitioning from the whole aircraft to the system and then to the subsystem or equipment. Then, a module partition clustering algorithm of LRU based on the key components of equipment is developed. In the algorithm, on the basis of obtaining the key components of the equipment by using Pareto principle, a comprehensive evaluation factor is constructed aiming at the cost and time during the military aircraft's whole life cycle of design and customization stage, maintenance and support stage, end-of-life stage. By the comprehensive evaluation factor, the optimal combination of non-key components and the interacted targets with them is realized, and finally a LRU partition scheme is formed. Taking the system layer design of a military aircraft as an example and the subsystem or equipment layer design process of the aircraft's environmental control system as an example, the preliminary division module of the macro-level is validated and the verification results are consistent. The LRU module of the evaporative cycle refrigeration device in the aircraft environmental control system is divided by using the LRU module partition clustering algorithm, and the partition results are compared with the actual LRU inventory of the device, comparisons show that the results are consistent with each other.

参考文献

[1] 王红霞, 叶晓慧. 装备测试性设计分析验证技术[M]. 北京:电子工业出版社, 2018:15-17. WANG H X, YE X H. The technology on testability design analysis and verification of equipment[M]. Beijing:Publishing House of Electronics Industry, 2018:15-17(in Chinese).
[2] 王红霞,叶晓慧,刘双双. 测试性分析中基于模糊聚类的系统划分方法研究[J]. 微电子学与计算机, 2010, 27(7):177-180. WANG H X, YE X H, LIU S S. System partition based on the fuzzy clustering in the system testability analysis[J]. Microelectronics and Computer, 2010, 27(7):177-180(in Chinese).
[3] 谌炎辉, 胡义华. 产品模块划分方法研究综述[J]. 机械设计与制造, 2013(5):264-266(in Chinese). CHEN Y H, HU Y H. Review of research of product modular division[J]. Machinery Design & Manufacture, 2013(5):264-266(in Chinese).
[4] 谢清. 定制产品功能-结构映射原理、方法及关键技术研究[D]. 杭州:浙江大学, 2007:52-54. XIE Q. Research on theories, methods & key technologies of mapping between function domain and structure domain for customization products[D]. Hangzhou:Zhejiang University, 2007:52-54(in Chinese).
[5] WEI W, ANG L, STEPHEN C,et al. A multi-principle module identification method for product platform design[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(1):1-10.
[6] NA Z, YU Y, ZHENG Y J. A module partition method base on complex network theory[C]//2016 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM). Piscataway, NJ:IEEE Press, 2016.
[7] LI Y P, CHU X N, CHU D X, et al. An integrated module partition approach for complex products and systems based on weighted complex networks[J].International Journal of Production Research, 2014, 52(15):4608-4622.
[8] CHANG T R, WANG C S, WANG C C. A systematic approach for green design in modular product development[J].International Journal of Advanced Manufacturing Technology, 2013, 68(9-12):2729-2741.
[9] LEI T Y, PENG W P, LEI J. A product module mining method for PLM database[J].Journal of Central South University, 2016, 23(7):1754-1766.
[10] 周友行, 曾雷, 张俏. 基于产品核心零件的模块划分方法[J]. 机械设计与研究, 2014, 30(2):1-7. ZHOU Y X, ZENG L, ZHANG Q. The modular partition method research based on product key parts[J]. Machine Design and Research, 2014, 30(2):1-7(in Chinese).
[11] 许评, 李玉鹏, 莫宇迪,等. 基于复杂网络的复杂机械产品关键零件识别[J]. 组合机床与自动化加工技术, 2018(10):51-54. XU P, LI Y P, MO Y D, et al. Identification of key parts within complex mechanical products based on complex networks[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2018(10):51-54(in Chinese).
[12] 张颖淳, 王淑良. 基于复杂网络理论的电力基础设施网络关键组件辨识[J]. 计算机科学, 2014, 41(5):275-279. ZHANG Y C, WANG S L. Critical components identification of power infrastructure systems based on complex network theory[J]. Computer Science, 2014, 41(5):275-279(in Chinese).
[13] 王永锋. 关于核心产品的思考[J]. 中国政府采购, 2018(4):77-80. WANG Y F. Reflections on key products[J]. China Government Procurement, 2018(4):77-80(in Chinese).
[14] 曾晓红, 郝喜海, 许卫红. 基于定性立体模型的包装机械可装配/拆卸性分析[J]. 包装工程, 2005, 26(6):54-57. ZENG X H, HAO X H, XU W H. Packaging machine assemblability/disassemblability analysis based on qualitative solid models[J]. Packaging Engineering, 2005, 26(6):54-57(in Chinese).
[15] 苏眉扬, 熊中楷. Pareto法则与效益公式[J]. 重庆大学学报(社会科学版), 1999, 5(3):63-65. SU M Y, XIONG Z K. Pareto rules and a beneficial formula[J]. Journal of Chongqing University(Social Sciences Edition), 1999, 5(3):63-65(in Chinese).
[16] 李媛媛. 飞机总体设计评估智能论证[D]. 西安:西北工业大学, 2007:8-11. LI Y Y. The comprehensive intelligent evaluation of aircraft conceptual/preliminary design[D]. Xi'an:Northwestern Polytechnical University, 2007:8-11(in Chinese).
[17] 鲁小蓉,叶金福,邹艳.航空武器装备PLM概念模型设计[J]. 工业工程, 2007,10(5):20-28. LU X R, YE J F, ZOU Y. Conceptual model design of aeronautic weapons PLM[J]. Industrial Engineering Journal, 2007,10(5):20-28(in Chinese).
[18] MA J F,GVl E, OKUDAN K. A sustainable modular product design approach with key components and uncertain end-of-life strategy consideration[J]. International Journal of Advanced Manufacturing Technology, 2015, 85(1-4):741-763.
[19] 蔡军. 产品设计阶段的成本管理研究[D]. 长沙:中南大学, 2011:57-69. CAI J. Cost management research on product design[D]. Changsha:Central South University, 2011:57-69(in Chinese).
[20] 王伟琳. 产品零部件拆卸工艺规划及评价[D]. 哈尔滨:哈尔滨工程大学, 2011:76-77. WANG W L. Disassembly process planning and evaluation of product parts[D]. Harbin:Harbin Engineer University, 2011:76-77(in Chinese).
[21] 张翯, 张诤敏, 翟红方. 待退役航空装备资源再利用问题研究[J]. 航空维修与工程, 2010(6):70-71. ZHANG H, ZHANG Z M, ZHAI H F. Research of recycling of aviation stay retired equipments[J]. Aviation Maintenance & Engineering, 2010(6):70-71(in Chinese).
文章导航

/