材料工程与机械制造

纵-扭复合超声钻削TC4钛合金振动系统设计与试验

  • 赵波 ,
  • 别文博 ,
  • 王晓博 ,
  • 常宝琪
展开
  • 河南理工大学 机械与动力工程学院, 焦作 454003

收稿日期: 2019-06-10

  修回日期: 2019-07-01

  网络出版日期: 2019-10-11

基金资助

国家自然科学基金(U1604255,51475148)

Design and experimental investigation on vibration system of longitudinal-torsional ultrasonic drilling TC4 titanium alloy

  • ZHAO Bo ,
  • BIE Wenbo ,
  • WANG Xiaobo ,
  • CHANG Baoqi
Expand
  • School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo 454003, China

Received date: 2019-06-10

  Revised date: 2019-07-01

  Online published: 2019-10-11

Supported by

National Natural Science Foundation of China (U1604255, 51475148)

摘要

螺旋沟槽变幅杆能够实现超声振动模式的转换,对单激励纵-扭复合振动的实现具有结构简单和操作可行的优点。基于弹性波场论对超声波在复合变幅杆中发生模式转换的原因及振动特性进行分析,并从超声波的入射角入手,分析入射角对振动模态的影响。在圆锥复合变幅杆的圆锥段开设螺旋沟槽,建立三维模型,并进行有限元仿真和试验验证,结果表明超声波入射角的改变对纵-扭复合变幅杆的扭-纵比影响显著。当入射角为46.5°和67.2°时,在变幅杆的输出端纵振模态和扭振模态发生明显的变化,实测的扭-纵比前者较后者提高约5.1倍。通过普通钻削与超声钻削实验对比,在不同的入射角条件下,超声钻削的平均钻削力均低于普通钻削力。与入射角为67.2°时对比,当入射角为46.5°时,平均钻削力降低约46%,并提高了制孔的质量,从而为模态转换的纵-扭复合变幅杆设计提供一定的理论依据。

本文引用格式

赵波 , 别文博 , 王晓博 , 常宝琪 . 纵-扭复合超声钻削TC4钛合金振动系统设计与试验[J]. 航空学报, 2020 , 41(1) : 423207 -423207 . DOI: 10.7527/S1000-6893.2019.23207

Abstract

The composite horn with helical slots can make the ultrasonic vibration convert and it has the advantages of simple structure and feasible operation for single excitement in longitudinal-torsional composite vibration. Based on the elastic wave-field theory, the reason of mode-conversion and the characteristics of vibration in composite horn were analyzed. The effects of incident angle on vibration mode are also analyzed. The helical slots are made in conical section of the composite horn and the finite element analysis of 3D model was erected. An experiment was carried out to verify the analysis. The results show that the ultrasonic incident angle had significant influence on the amplitude ratio of torsional vibration to the longitudinal vibration. The torsional vibration and longitudinal vibration changes obviously at the output of the horn when the incident angle was 46.5° and 67.2°, and the measured amplitude ratio of torsional vibration to the longitudinal vibration in the former is improved by 5.1 times than that in the latter. Compared with conventional drilling, the average drilling force in ultrasonic vibration drilling is lower at different incidence angles. Simultaneously, the average drilling force at the incident angle of 46.5° is reduced by 46% than that under the angle of 67.2°, and the machined effect of hole is better. The results provide theoretical and experimental basis for the design of the longitudinal-torsional horn.

参考文献

[1] 张云鹏, 孙广标, 张安洲. 超声磨料对TC4钛合金电火花加工表面质量的影响[J]. 航空学报, 2010, 31(1):204-209. ZHANG Y P, SUN G B, ZHANG A Z. Effect of abrasive particle ultrasonic vibration on surface quality of titanium alloy TC4 in EDM[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(1):204-209(in Chinese).
[2] 丁文锋, 奚欣欣, 占京华, 等. 航空发动机钛材料磨削技术研究现状及展望[J]. 航空学报, 2019, 40(6):022763. DING W F, XI X X, ZHAN J H, et al. Research status and future development of grinding technology of titanium materials for aero-engines[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(6):022763(in Chinese).
[3] ARRAZOLA P J, OZEL T, UMBRELLO D, et al. Recent advances in modelling of metal machining processes[J]. CIRP Annals-Manufacturing Technology, 2013, 62(2):695-718.
[4] 官良鹏, 王卫泽. 超声深滚作用力对Ti-6Al-4V合金微观组织及表面性能的影响[J]. 表面技术, 2018, 47(7):172-178. GUAN L P, WANG W Z. Effects of ultrasonic deep rolling force on microstructure and surface properties of Ti-6Al-4V[J]. Surface Technology, 2018, 47(7):172-178(in Chinese).
[5] 隈部淳一郎. 精密加工一振动切削基础和应用(中译本)[M]. 北京:机械工业出版社, 1985:20-25. KUMABE J. Fundamentals and applications of precision machining vibration cutting (Chinese version)[M]. Beijing:China Machine Press, 1985:20-25(in Chinese).
[6] ABDULLAH A, FARHADI A, PAK A. Ultrasonic-assisted dry creep-feed up-grinding of super alloy inconel 738LC[J]. Experimental Mechanics, 2012, 52(7):843-853.
[7] CHEN H, ZHOU W, TANG J. An experimental study of the effects of ultrasonic vibration on grinding surface roughness of C45 carbon steel[J]. International Journal of Advanced Manufacturing Technology, 2013, 68(9-12):2095-2098.
[8] NIU Y, JIAO F, ZHAO B, et al. Multi-objective optimization of processing parameters in longitudinal-torsion ultrasonic assisted milling of Ti-6Al-4V[J]. International Journal of Advanced Manufacturing Technology, 2017, 93(9-12):1-12.
[9] XIANG D H, WU B F, YAO Y L, et al. Ultrasonic longitudinal-torsional vibration-assisted cutting of Nomex honeycomb-core composites[J]. The International Journal of Advanced Manufacturing Technology, 2019, 100(5-8):1521-1530.
[10] LIN S. Study on the Langevin piezoelectric ceramic ultrasonic transducer of longitudinal-flexural composite vibrational mode[J]. Ultrasonics, 2006, 44(1):109-114.
[11] ZHOU G, ZHANG Y, ZHANG B. The complex-mode vibration of ultrasonic vibration systems[J]. Ultrasonics, 2002, 40(1):907-911.
[12] QIAN X H, SHEN M H. A new standing-wave linear moving ultrasonic motor based on two bending modes[J]. Applied Mechanics and Materials, 2011, 101-102:140-143.
[13] WANG J, GUO J. Development of a radial-torsional vibration hybrid type ultrasonic motor with a hollow and short cylindrical structure[J]. IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control, 2009, 56(5):54-58.
[14] MA C X, SHAMOTO E, MORIWAKI T, et al. Study of machining accuracy in ultrasonic elliptical vibration cutting[J]. International Journal of Machine Tools and Manufacture, 2004, 44(12-13):1305-1310.
[15] PAKTINAT H, AMINI S. Numerical and experimental studies of longitudinal and longitudinal-torsional vibrations in drilling of AISI 1045[J]. International Journal of Advanced Manufacturing Technology, 2018, 94:2577-2592.
[16] ASAMI T, MIURA H. Study of ultrasonic machining by longitudinal-torsional vibration for processing brittle materials-observation of machining marks[J]. Physics Procedia, 2015, 70:118-121.
[17] WANG J, ZHANG J, FENG P, et al. Damage formation and suppression in rotary ultrasonic machining of hard and brittle materials:A critical review[J]. Ceramics International, 2018, 44(2):1227-1239.
[18] 冯平法, 王健健, 张建富, 等. 硬脆材料旋转超声加工技术的研究现状及展望[J]. 机械工程学报, 2017, 53(19):3-21. FENG P F, WANG J J, ZHANG J F, et al. Research status and future prospects of rotary ultrasonic machining of hard and brittle materials[J]. Journal of Mechanical Engineering, 2017, 53(19):3-21(in Chinese).
[19] 牛赢, 焦锋, 赵波, 等. 纵扭超声铣削残余应力三维有限元仿真与试验[J]. 机械工程学报, 2019, 55(13):224-232. NIU Y, JIAO F, ZHAO B, et al. 3D finite element simulation and experimentation of residual stress in longitudinal torsional ultrasonic assisted milling[J]. Journal of Mechanical Engineering, 2019, 55(13):224-232(in Chinese).
[20] 唐军. 碳/碳化硅材料纵扭复合超声铣削系统及加工稳定性的研究[D]. 焦作:河南理工大学, 2015:106-109. TANG J. Study on the longitudinal-torsional composite ultrasonic milling system of carbon/silicon carbide and machining stability[D]. Jiaozuo:Henan Polytechnic University, 2015:106-109(in Chinese).
[21] ZHAO C Y, WANG X B, ZHAO B, et al. Microstructure of high-performance aluminum alloy surface processed by the single-excitation same-frequency longitudinal-torsional coupled ultrasonic vibration milling[J]. Materials, 2018, 11(10):1975.
[22] GENG D X, ZHANG D Y, XU Y G, et al. Comparison of drill wear mechanism between rotary ultrasonic elliptical machining and conventional drilling of CFRP[J]. Journal of Reinforced Plastics and Composites, 2014, 33(9):797-809.
[23] DING K, FU Y, SU H, et al. Wear of diamond grinding wheel in ultrasonic vibration-assisted grinding of silicon carbide[J]. The International Journal of Advanced Manufacturing Technology, 2014, 71(9-12):1929-1938.
[24] 杨淋, 赵淳生. 大力矩应力型纵扭复合超声电机[J].振动.测试与诊断, 2012(S1):126-131. YANG L, ZHAO C S. Stress-type hybrid ultrasonic motors using longitudinal and torsional vibration modes with large torque[J]. Journal of Vibration Measurement & Diagnosis, 2012(S1):126-131(in Chinese).
[25] 唐军, 赵波. 单激励纵扭复合超声铣削系统研究[J]. 振动与冲击, 2015, 34(6):57-61. TANG J, ZHAO B. A new longitudinal-torsional composite ultrasonic milling system with a single excitation[J]. Journal of Vibration and Shock, 2015, 34(6):57-61(in Chinese).
[26] ASAMI T, TAMADA Y, HIGUCHI Y, et al. Ultrasonic metal welding with a vibration source using longitudinal and torsional vibration transducers[J]. Japanese Journal of Applied Physics, 2017, 56(7S1):07JE02.
[27] KARAFI M R, HOJJAT Y, SASSANI F. A new hybrid longitudinal-torsional magnetostrictive ultrasonic transducer[J]. Smart Materials & Structures, 2013, 22(6):065013.
[28] 赵波, 殷森, 王晓博, 等. 超声纵-扭复合空心变幅杆的振动特性分析[J]. 机械工程学报, 2019, 55(5):121-129. ZHAO B, YIN S, WANG X B, et al. Vibration analysis of ultrasonic longitudinal-torsional composite hollow horn[J]. Journal of Mechanical Engineering, 2019, 55(5):121-129(in Chinese).
[29] 皮钧. 圆环斜槽传振杆的纵扭振动转换[J]. 机械工程学报, 2008, 44(5):242-248. PI J. Longitudinal-torsional vibration converter of cylinder with multiple diagonal slits[J]. Journal of Mechanical Engineering, 2008, 44(5):242-248(in Chinese).
[30] AL-BUDAIRI H, LUCAS M, HARKNESS P. A design approach for longitudinal-torsional ultrasonic transducers[J]. Sensors and Actuators A:Physical, 2013, 198:99-106.
[31] AMINI S, SOLEIMANI M, PAKTINAT H, et al. Effect of longitudinal-torsional vibration in ultrasonic-assisted drilling[J]. Advanced Manufacturing Processes, 2017, 32(6):616-622.
[32] WANG J, ZHANG J, FENG P, et al. Feasibility study of longitudinal-torsional coupled rotary ultrasonic machining of brittle material[J]. Journal of Manufacturing Science and Engineering, 2018, 140(5):051008.
[33] 刘喜武. 弹性波场论基础[M]. 青岛:中国海洋大学出版社, 2008:69-72. LIU X W. Fundamentals of elastic wave field-theory[M]. Qingdao:China Ocean University Press, 2008:69-72(in Chinese).
[34] 林仲茂. 超声变幅杆的原理和设计[M]. 北京:科学出版社, 1987:54-60. LIN Z M. Principle and design of ultrasonic horn[M]. Beijing:Science Press, 1987:54-60(in Chinese).
[35] 曹凤国. 超声加工[M]. 北京:化学工业出版社, 2014:87-88. CAO F G. Ultrasonic machining[M]. Beijing:Chemical Industry Press, 2014:87-88(in Chinese).
[36] 袁松梅, 刘明. 纵-扭复合超声振动加工系统设计及频率简并研究[J]. 振动与冲击, 2016, 35(5):8-13. YUAN S M, LIU M. Design of a longitudinal-torsional composite ultrasonic vibration machining system and its natural frequencies merging[J]. Journal of Vibration and Shock, 2016, 35(5):8-13(in Chinese).
[37] CARDONI A, HARKNESS P, LUCAS M. Ultrasonic rock sampling using longitudinal-torsional vibrations[J]. Ultrasonics, 2010, 50(4-5):447-452.
[38] 殷森. 纵-扭复合超声铣削系统的设计及试验研究[D]. 焦作:河南理工大学, 2018:58-60. YIN S. Design and experimental research on the composite longitudinal-torsional ultrasonic milling system[D]. Jiaozuo:Henan Polytechnic University, 2018:58-60(in Chinese).
[39] 王明海, 姜庆杰, 王奔. C/SiC复合材料超声扭转振动铣削抑制损伤产生的机理[J]. 现代制造工程, 2016(3):103-109. WANG M H, JIANG Q J, WANG B. Mechanism of reduction of damage during ultrasonic torsional vibration milling of C/SiC composites[J]. Modern Manufacturing Engineering, 2016(3):103-109(in Chinese).
[40] GU L Z, LONG Z M, WANG D, et al. The stress wave propagation and crack formation in vibratory metal cutting process[J]. Key Engineering Materials, 2004, 259-260:456-461.
文章导航

/