电子电气工程与控制

基于反步推演法的多机编队队形重构控制

  • 张佳龙 ,
  • 闫建国 ,
  • 张普
展开
  • 西北工业大学 自动化学院, 西安 710129

收稿日期: 2019-05-22

  修回日期: 2019-06-26

  网络出版日期: 2019-08-12

基金资助

西北工业大学博士论文创新基金(CX201955)

Multi-UAV formation forming reconfiguration control based on back-stepping method

  • ZHANG Jialong ,
  • YAN Jianguo ,
  • ZHANG Pu
Expand
  • School of Automation, Northwestern Polytechnical University, Xi'an 710129, China

Received date: 2019-05-22

  Revised date: 2019-06-26

  Online published: 2019-08-12

Supported by

Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University (CX201955)

摘要

针对多无人机(UAV)集结期望的队形和达到稳态速度缓慢影响作战效率,基于反步推演法设计了一种协同导引控制律,用于解决多无人机快速队形重构和快速达到稳定状态。本文以一架虚拟长机为中心,3架僚机在3个顶点组成的三角形编队作为被控对象,且长机的速度方向作为编队的前行方向,僚机跟随长机编队飞行。采用长机导引机制,建立每架僚机的误差动力学模型;基于图论建立任意两架无人机之间的通讯模式,通过反步推演法得到多无人机编队队形保持的导引控制律。通过构建合理的Lyapunov函数,证明所提出的控制方法在编队集结和队形保持的有效性,同时将所提出的方法与模型预测控制(MPC)方法和拉普拉斯方法进行对比,更进一步验证所提方法有效性。仿真结果表明:每架无人机不仅能够按照期望的队形飞行,而且以动态响应快和稳态误差小收敛于虚拟长机的运动轨迹。

本文引用格式

张佳龙 , 闫建国 , 张普 . 基于反步推演法的多机编队队形重构控制[J]. 航空学报, 2019 , 40(11) : 323177 -323177 . DOI: 10.7527/S1000-6893.2019.23177

Abstract

Aiming at the slowed combat efficiency for desired forming and the steady-state speed of multi-UAV, a cooperative guidance control method is designed based on the back-stepping approach, which is used to rapidly form the desired formation and reach the steady-state of Multi-UAV. The UAV formation system consists of four UAVs, forming a regular triangle formation. One of the UAVs is a virtual leader, located in the center of the triangle, and the other three UVAs are located in the vertex of the triangle. Meanwhile, the forward speed of the leader is used as the forward direction of formation, and the followers follow the leader with formation flight. The error dynamics model of each follower is established by using the leader guidance mechanism, and the communication mode between any two UAVs is established based on the graph theory. In addition, the guidance control law is obtained by the back-stepping approach. A reasonable Lyapunov function is constructed to prove the effectiveness of the proposed cooperative guidance control law in formation aggregation and formation keeping. Moreover, the proposed method is compared with the Model Prediction control (MPC) and the Laplace method to further verify the effectiveness of the proposed method. The simulation results show that each UAV can converge the desired motion trajectory and fly in the desired formation with fast convergence speed and small steady-state error.

参考文献

[1] NAN Z, LIANG Y C, PEI Y. Dynamic contract design for cooperative wireless networks[C]//Globecom IEEE Global Communications Conference. Piscataway, NJ:IEEE Press, 2018.
[2] KARIMODDINI A, LIN H, CHEN B M, et al. Hybrid formation control of the unmanned aerial vehicles[J]. Mechatronics, 2011, 21(5):886-898.
[3] 朱虹, 孙青林, 邬婉楠, 等. 伞翼无人机精确建模与控制[J]. 航空学报, 2019, 40(6):122593. ZHU H, SUN Q L, WU W N, et al. Accurate modeling and control for parawing unmanned aerial vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(6):122593(in Chinese).
[4] 刘芳, 王洪娟, 黄光伟, 等. 基于自适应深度网络的无人机目标跟踪算法[J]. 航空学报, 2019, 40(3):322332. LIU F, WANG H J, HUANG G W, et al. UAV target tracking algorithm based on adaptive depth network[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(3):322332(in Chinese).
[5] SÁ A O D, CARMO L F R D C, MACHADO R C S. A controller design for mitigation of passive system identification attacks in networked control systems[J]. Journal of Internet Services & Applications, 2018, 9(1):1-19.
[6] CHAO M, HUANG J B, YANG X, et al. Adaptive correlation filters with long-term and short-term memory for object tracking[J]. International Journal of Computer Vision, 2018(2):1-26.
[7] 顾伟, 汤俊, 白亮, 等. 面向时间协同的多无人机队形变换最优效率模型[J]. 航空学报, 2019, 40(6):322599. GU W, TANG J, BAI L, et al. A time synergistic optimal efficiency model for formation transformation of multiple UAVs[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(6):322599(in Chinese).
[8] HOWLETT P. An optimal strategy for the control of a train[J]. The Journal of the Australian Mathematical Society Series B Applied Mathematics, 1990, 31(4):454-471.
[9] HOWLETT P G, CHENG J. Optimal driving strategies for a train on a track with continuously varying gradient[J]. The ANZIAM Journal, 1997, 38(3):388-410.
[10] PETER P, PHIL H. Optimal driving strategies for a train journey with speed limits[J]. The ANZIAM Journal, 1994, 36(1):38-49.
[11] BALCH T. Behavior-based formation control for multi-robot teams[J]. IEEE Transactions on Robotics and Automation, 1998, 14(6):926-939.
[12] WANG J, NIAN X H, WANG H B. Consensus and formation control of discrete-time multi-agent systems[J]. Journal of Central South University of Technology, 2011, 18(4):1161-1168.
[13] ZHANG J, YAN J, ZHANG P. Fixed-wing UAV formation control design with collision avoidance based on an improved artificial potential field[J]. IEEE Access, 2018, 6:78342-78351.
[14] 宋建辉, 代涛, 刘砚菊. 基于改进人工势场法的移动机器人路径规划[J]. 计算机工程与科学, 2017, 39(7):1328-1332. SONG J H, DAI T, LIU Y J. Path planning of mobile robot based on improved artificial potential field[J]. Computer Engineering & Science, 2017, 39(7):1328-1332(in Chinese).
[15] 江杰, 任恒靓. 基于改进人工势场法的移动机器人路径规划的研究[J]. 自动化应用, 2017(8):80-81. JIANG J, REN H J. Study on path planning of mobile robot based on improved artificial potential field method[J]. Automation Application, 2017(8):80-81(in Chinese).
[16] 吴渊博, 李兴广, 陈殿仁, 等. 基于混沌改进人工势场法的自动导引车避障研究[J]. 科技创新导报, 2017, 14(17):150-153. WU Y B, LI X G, CHEN D R, et al. Obstacle avoidance research of the automated guided vehicle based on improved artificial potential field method with chaotic optimization[J]. Science & Technology Innovation Herald, 2017, 14(17):150-153(in Chinese).
[17] 王希彬, 宋广大, 杨飞. 基于最优控制的无人机主动SLAM航迹规划[J]. 兵工自动化, 2018,37(12):55-57. WANG X B, SONG G D, YANG F. UAV active SLAM trajectory programming based on optimal control[J]. Ordnance Industry Automation, 2018, 37(12):55-57(in Chinese).
[18] 成成, 张跃, 储海荣, 等. 分布式多无人机协同编队队形控制仿真[J]. 计算机仿真, 2019, 36(5):31-37. CHENG C, ZHANG Y, CHU H R, et al. Simulation of distribution cooperative formation control for multi-UAVs[J]. Computer Simulation, 2019, 36(5):31-37(in Chinese).
[19] 屈云豪, 丁永生, 郝矿荣, 等. 行军启发的多机器人紧密队形保持策略[J]. 智能系统学报, 2018(5):673-679. QU Y H, DING Y S, HAO K R, et al. March-inspired multi-robot compact formation strategy[J]. CAAI Transactions on Intelligent Systems, 2018(5):673-679(in Chinese).
[20] 毛琼, 李小民, 王正军. 基于规则的无人机编队队形构建与重构控制方法[J]. 系统工程与电子技术, 2019, 41(5):1118-1126. MAO Q, LI X M, WANG Z J. Formation and reformation control method for UAVs formation shape based on rules[J]. Systems Engineering and Electronics, 2019, 41(5):1118-1126(in Chinese).
[21] 王卫宁. 三维无人机编队队形重构与队形保持控制算法研究[D]. 沈阳:沈阳航空航天大学, 2018. WANG W N. Reseach on formation reconfiguration and formation keeping control algorithm for three dimensional UAVs[D]. Shenyang:Shenyang Aerospace University, 2018(in Chinese).
[22] STIPANOVIC D M, NALHAN G, TEO R, et al. Decentralized overlapping control of a formation of unmanned aerial vehicles[J]. Automatica, 2004, 40(8):1285-1296.
[23] 茹常剑, 魏瑞轩, 郭庆, 等. 面向无人机自主防碰撞的认知博弈制导控制[J]. 控制理论与应用, 2014, 31(11):1555-1560. RU C J, WEI R X, GUO Q, et al. Cognitive game guidance control for UAV autonomous anti-collision[J]. Control Theory and Applications, 2014, 31(11):1555-1560(in Chinese).
[24] KEVICZKY T, BORRELLI F, FREGENE K, et al. Decentralized receding horizon control and coordination of autonomous vehicle formations[J]. IEEE Transactions on Control Systems Technology, 2008, 16(1):19-33.
[25] ROSA M R, BALDI S, WANG X, et al. Adaptive hierarchical formation control for uncertain Euler-Lagrange systems using distributed inverse dynamics[J]. European Journal of Control, 2018, 48:52-56.
[26] ROCCHI A B C. Decentralized hybrid model predictive control of a formation of unmanned aerial vehicles[J]. IFAC Proceedings Volumes, 2011, 44(1):11900-11906.
[27] ARCAK M, SERON M, BRASLAVSKY J, et al. Robustification of backstepping against input unmodeled dynamics[J]. IEEE Transactions on Automatic Control, 2000, 45(7):1358-1363.
[28] KRSTIC M, KANELLAKOPOULOS I, KOKOTOVIC P V. Nonlinear and adaptive control design[M]. New York:Wiley-Inter Science, 1995.
[29] GIANCARMINE F. Multisensor based fully autonomous non-cooperative collision avoidance system for UAVs[J]. Journal of Aerospace Computing Information & Communication, 2008, 5(10):338-360.
[30] KUWATA Y, HOW J P. Robust cooperative decentralized trajectory optimization using receding horizon MILP[C]//American Control Conference, 2007.
[31] FLOCCHINI P, PRENCIPE G, SANTORO N, et al. Distributed computing by mobile robots:Uniform circle formation[J]. Distributed Computing, 2017, 8878(6):1-45.
[32] BRAD S, GU Y, MARCELLO R N, et al. 3-aircraft formation flight experiment[C]//14th IEEE Mediterranean Conference on Control and Automation. Piscataway, NJ:IEEE Press, 2006:1-6.
[33] HOW J, KING E, KUWATA Y. Flight demonstrations of co-operative control for UAV teams[C]//3rd AIAA "Un-manned Unlimited" Technical Conference, Workshop and Exhibit. Reston, VA:AIAA, 2004:1-9.
[34] 胡朝晖, 李聪, 王勇, 等. 基于领导跟随一致性理论的队形保持策略[J]. 火力与指挥控制, 2019, 44(5):61-66. HU Z H, LI C, WANG Y, et al. Multiple UAVs formation keeping based on leader-following consensus protocol, 2019, 44(5):61-66(in Chinese).
[35] BEARD R, KINGSTON D, QUIGLEY M, et al. Autonomous vehicle technologies for small fixed-wing UAVs[J]. Journal of Aerospace Computing, Information, and Communication, 2005, 2(3):92-108.
[36] WISE R A, RYSDYK R T. UAV coordination for autonomous target tracking[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston, VA:AIAA, 2006:1-22.
[37] ATKINSE R. Nonlinear trajectory tracking for fixed wing UAVs via back-stepping and parameter adaptation[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston, VA:AIAA, 2005:AIAA-2005-6196.
[38] SUJIT P B, BEARD R. Multiple UAV path planning using anytime algorithms[C]//American Control Conference. Piscataway, NJ:IEEE Press, 2009:2978-2983.
[39] ZHANG J, YAN J, ZHANG P, et al. Design and information architectures for an unmanned aerial vehicle cooperative formation tracking controller[J]. IEEE Access, 2018, 6:45821-45833.
文章导航

/