[1] NAN Z, LIANG Y C, PEI Y. Dynamic contract design for cooperative wireless networks[C]//Globecom IEEE Global Communications Conference. Piscataway, NJ:IEEE Press, 2018.
[2] KARIMODDINI A, LIN H, CHEN B M, et al. Hybrid formation control of the unmanned aerial vehicles[J]. Mechatronics, 2011, 21(5):886-898.
[3] 朱虹, 孙青林, 邬婉楠, 等. 伞翼无人机精确建模与控制[J]. 航空学报, 2019, 40(6):122593. ZHU H, SUN Q L, WU W N, et al. Accurate modeling and control for parawing unmanned aerial vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(6):122593(in Chinese).
[4] 刘芳, 王洪娟, 黄光伟, 等. 基于自适应深度网络的无人机目标跟踪算法[J]. 航空学报, 2019, 40(3):322332. LIU F, WANG H J, HUANG G W, et al. UAV target tracking algorithm based on adaptive depth network[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(3):322332(in Chinese).
[5] SÁ A O D, CARMO L F R D C, MACHADO R C S. A controller design for mitigation of passive system identification attacks in networked control systems[J]. Journal of Internet Services & Applications, 2018, 9(1):1-19.
[6] CHAO M, HUANG J B, YANG X, et al. Adaptive correlation filters with long-term and short-term memory for object tracking[J]. International Journal of Computer Vision, 2018(2):1-26.
[7] 顾伟, 汤俊, 白亮, 等. 面向时间协同的多无人机队形变换最优效率模型[J]. 航空学报, 2019, 40(6):322599. GU W, TANG J, BAI L, et al. A time synergistic optimal efficiency model for formation transformation of multiple UAVs[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(6):322599(in Chinese).
[8] HOWLETT P. An optimal strategy for the control of a train[J]. The Journal of the Australian Mathematical Society Series B Applied Mathematics, 1990, 31(4):454-471.
[9] HOWLETT P G, CHENG J. Optimal driving strategies for a train on a track with continuously varying gradient[J]. The ANZIAM Journal, 1997, 38(3):388-410.
[10] PETER P, PHIL H. Optimal driving strategies for a train journey with speed limits[J]. The ANZIAM Journal, 1994, 36(1):38-49.
[11] BALCH T. Behavior-based formation control for multi-robot teams[J]. IEEE Transactions on Robotics and Automation, 1998, 14(6):926-939.
[12] WANG J, NIAN X H, WANG H B. Consensus and formation control of discrete-time multi-agent systems[J]. Journal of Central South University of Technology, 2011, 18(4):1161-1168.
[13] ZHANG J, YAN J, ZHANG P. Fixed-wing UAV formation control design with collision avoidance based on an improved artificial potential field[J]. IEEE Access, 2018, 6:78342-78351.
[14] 宋建辉, 代涛, 刘砚菊. 基于改进人工势场法的移动机器人路径规划[J]. 计算机工程与科学, 2017, 39(7):1328-1332. SONG J H, DAI T, LIU Y J. Path planning of mobile robot based on improved artificial potential field[J]. Computer Engineering & Science, 2017, 39(7):1328-1332(in Chinese).
[15] 江杰, 任恒靓. 基于改进人工势场法的移动机器人路径规划的研究[J]. 自动化应用, 2017(8):80-81. JIANG J, REN H J. Study on path planning of mobile robot based on improved artificial potential field method[J]. Automation Application, 2017(8):80-81(in Chinese).
[16] 吴渊博, 李兴广, 陈殿仁, 等. 基于混沌改进人工势场法的自动导引车避障研究[J]. 科技创新导报, 2017, 14(17):150-153. WU Y B, LI X G, CHEN D R, et al. Obstacle avoidance research of the automated guided vehicle based on improved artificial potential field method with chaotic optimization[J]. Science & Technology Innovation Herald, 2017, 14(17):150-153(in Chinese).
[17] 王希彬, 宋广大, 杨飞. 基于最优控制的无人机主动SLAM航迹规划[J]. 兵工自动化, 2018,37(12):55-57. WANG X B, SONG G D, YANG F. UAV active SLAM trajectory programming based on optimal control[J]. Ordnance Industry Automation, 2018, 37(12):55-57(in Chinese).
[18] 成成, 张跃, 储海荣, 等. 分布式多无人机协同编队队形控制仿真[J]. 计算机仿真, 2019, 36(5):31-37. CHENG C, ZHANG Y, CHU H R, et al. Simulation of distribution cooperative formation control for multi-UAVs[J]. Computer Simulation, 2019, 36(5):31-37(in Chinese).
[19] 屈云豪, 丁永生, 郝矿荣, 等. 行军启发的多机器人紧密队形保持策略[J]. 智能系统学报, 2018(5):673-679. QU Y H, DING Y S, HAO K R, et al. March-inspired multi-robot compact formation strategy[J]. CAAI Transactions on Intelligent Systems, 2018(5):673-679(in Chinese).
[20] 毛琼, 李小民, 王正军. 基于规则的无人机编队队形构建与重构控制方法[J]. 系统工程与电子技术, 2019, 41(5):1118-1126. MAO Q, LI X M, WANG Z J. Formation and reformation control method for UAVs formation shape based on rules[J]. Systems Engineering and Electronics, 2019, 41(5):1118-1126(in Chinese).
[21] 王卫宁. 三维无人机编队队形重构与队形保持控制算法研究[D]. 沈阳:沈阳航空航天大学, 2018. WANG W N. Reseach on formation reconfiguration and formation keeping control algorithm for three dimensional UAVs[D]. Shenyang:Shenyang Aerospace University, 2018(in Chinese).
[22] STIPANOVIC D M, NALHAN G, TEO R, et al. Decentralized overlapping control of a formation of unmanned aerial vehicles[J]. Automatica, 2004, 40(8):1285-1296.
[23] 茹常剑, 魏瑞轩, 郭庆, 等. 面向无人机自主防碰撞的认知博弈制导控制[J]. 控制理论与应用, 2014, 31(11):1555-1560. RU C J, WEI R X, GUO Q, et al. Cognitive game guidance control for UAV autonomous anti-collision[J]. Control Theory and Applications, 2014, 31(11):1555-1560(in Chinese).
[24] KEVICZKY T, BORRELLI F, FREGENE K, et al. Decentralized receding horizon control and coordination of autonomous vehicle formations[J]. IEEE Transactions on Control Systems Technology, 2008, 16(1):19-33.
[25] ROSA M R, BALDI S, WANG X, et al. Adaptive hierarchical formation control for uncertain Euler-Lagrange systems using distributed inverse dynamics[J]. European Journal of Control, 2018, 48:52-56.
[26] ROCCHI A B C. Decentralized hybrid model predictive control of a formation of unmanned aerial vehicles[J]. IFAC Proceedings Volumes, 2011, 44(1):11900-11906.
[27] ARCAK M, SERON M, BRASLAVSKY J, et al. Robustification of backstepping against input unmodeled dynamics[J]. IEEE Transactions on Automatic Control, 2000, 45(7):1358-1363.
[28] KRSTIC M, KANELLAKOPOULOS I, KOKOTOVIC P V. Nonlinear and adaptive control design[M]. New York:Wiley-Inter Science, 1995.
[29] GIANCARMINE F. Multisensor based fully autonomous non-cooperative collision avoidance system for UAVs[J]. Journal of Aerospace Computing Information & Communication, 2008, 5(10):338-360.
[30] KUWATA Y, HOW J P. Robust cooperative decentralized trajectory optimization using receding horizon MILP[C]//American Control Conference, 2007.
[31] FLOCCHINI P, PRENCIPE G, SANTORO N, et al. Distributed computing by mobile robots:Uniform circle formation[J]. Distributed Computing, 2017, 8878(6):1-45.
[32] BRAD S, GU Y, MARCELLO R N, et al. 3-aircraft formation flight experiment[C]//14th IEEE Mediterranean Conference on Control and Automation. Piscataway, NJ:IEEE Press, 2006:1-6.
[33] HOW J, KING E, KUWATA Y. Flight demonstrations of co-operative control for UAV teams[C]//3rd AIAA "Un-manned Unlimited" Technical Conference, Workshop and Exhibit. Reston, VA:AIAA, 2004:1-9.
[34] 胡朝晖, 李聪, 王勇, 等. 基于领导跟随一致性理论的队形保持策略[J]. 火力与指挥控制, 2019, 44(5):61-66. HU Z H, LI C, WANG Y, et al. Multiple UAVs formation keeping based on leader-following consensus protocol, 2019, 44(5):61-66(in Chinese).
[35] BEARD R, KINGSTON D, QUIGLEY M, et al. Autonomous vehicle technologies for small fixed-wing UAVs[J]. Journal of Aerospace Computing, Information, and Communication, 2005, 2(3):92-108.
[36] WISE R A, RYSDYK R T. UAV coordination for autonomous target tracking[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston, VA:AIAA, 2006:1-22.
[37] ATKINSE R. Nonlinear trajectory tracking for fixed wing UAVs via back-stepping and parameter adaptation[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston, VA:AIAA, 2005:AIAA-2005-6196.
[38] SUJIT P B, BEARD R. Multiple UAV path planning using anytime algorithms[C]//American Control Conference. Piscataway, NJ:IEEE Press, 2009:2978-2983.
[39] ZHANG J, YAN J, ZHANG P, et al. Design and information architectures for an unmanned aerial vehicle cooperative formation tracking controller[J]. IEEE Access, 2018, 6:45821-45833.