电子电气工程与控制

逼近无控旋转目标航天器的混合势函数安全制导

  • 刘将辉 ,
  • 李海阳 ,
  • 陆林 ,
  • 赵剑
展开
  • 国防科技大学 空天科学学院, 长沙 410073

收稿日期: 2019-04-09

  修回日期: 2019-05-06

  网络出版日期: 2019-07-29

基金资助

国家自然科学基金(11472301)

Hybrid potential function safety guidance for approaching uncontrolled rotating target spacecraft

  • LIU Jianghui ,
  • LI Haiyang ,
  • LU Lin ,
  • ZHAO Jian
Expand
  • College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China

Received date: 2019-04-09

  Revised date: 2019-05-06

  Online published: 2019-07-29

Supported by

National Natural Science Foundation of China (11472301)

摘要

研究了追踪航天器逼近无控旋转目标航天器的安全制导问题,逼近过程中,追踪航天器需要躲避空间中的障碍物,同时需要避免与目标航天器的太阳能电池帆板和天线等附件发生碰撞。建立了视线坐标系下的两航天器间的相对运动方程,采用四元数描述目标航天器的姿态运动。将参考位置设为引力源,设计了吸引势函数。针对安全逼近问题,建立了球面安全区和锥面安全走廊,设计了安全势函数。将障碍物假设为具有一定半径的球体,设计了障碍物势函数。吸引势函数、安全势函数和障碍物势函数一起组成了混合势函数。为了解决整个势场中除参考位置外还可能存在其他局部极小点问题,对混合势函数进行了修正,保证参考位置位于混合势函数的最低点。利用Lyapunov稳定性理论对混合势函数进行了稳定性分析,推得符合要求的控制加速度,使追踪航天器沿着混合势函数的负梯度方向逼近无控旋转目标航天器。最后通过数值仿真验证了该方法的有效性。

本文引用格式

刘将辉 , 李海阳 , 陆林 , 赵剑 . 逼近无控旋转目标航天器的混合势函数安全制导[J]. 航空学报, 2019 , 40(10) : 323068 -323068 . DOI: 10.7527/S1000-6893.2019.23068

Abstract

The safety guidance of the chaser spacecraft approaching the uncontrolled rotating target spacecraft is studied in this paper. During the approach, the chaser spacecraft needs to avoid obstacles in the space and avoid collisions with accessories such as the solar panels and antennas of the target spacecraft. The relative motion equation between two spacecraft under the line of the sight coordinate system is established. The quaternion is used to describe the attitude motion of the target spacecraft. The attraction potential function is designed by setting the reference position as the gravitational source. To ensure safe approaching, the spherical safety zone and the cone safety corridor are designed, and the safety potential function is designed. The obstacle is assumed to be a sphere with a certain radius, and the obstacle potential function is designed. The attraction potential function, the safety potential function, and the obstacle potential function constitute a hybrid potential function. In order to solve the problem that there may be other local minima in the whole potential field besides the reference position, the hybrid potential function is modified to ensure that the reference position is at the lowest point of the hybrid potential function. The stability of the hybrid potential function is analyzed by Lyapunov stability theory, and the required control acceleration is derived, which makes the chaser approaches the uncontrolled rotation target spacecraft along the negative gradient of the hybrid potential function. Finally, the effectiveness of this method is verified by numerical simulation.

参考文献

[1] 崔乃刚, 张立佳. 微型航天器与空间非合作目标交会制导方法[J]. 航空学报, 2009, 30(8):1466-1471. CUI N G, ZHANG L J. Guidance of micro-spacecraft for rendezvous with noncooperative target[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(8):1466-1471(in Chinese).
[2] 于大腾, 王华, 孙福煜. 考虑潜在威胁区的航天器最优规避机动策略[J]. 航空学报, 2017, 38(1):286-294. YU D T, WANG H, SUN F Y. Optimal evasive maneuver strategy with potential threatening area being considered[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(1):286-294(in Chinese).
[3] 路勇, 刘晓光, 周宇, 等. 空间翻滚非合作目标消旋技术发展综述[J]. 航空学报, 2018, 39(1):021302. LU Y, LIU X G, ZHOU Y, et al. Review of detumbling technologies for active removal of uncooperative targets[J]. Acta Aeronaustica et Astronautica Sinica, 2018, 39(1):021302(in Chinese).
[4] BANDYOPADHYAY S, CHUNG S J, HADAEGH F Y. Nonlinear attitude control of spacecraft with a large captured object[J]. Journal of Guidance, Control, and Dynamics, 2016, 39(4):754-769.
[5] ZANG L, QIAN S, ZHANG S, et al. Research on angles-only/SINS/CNS relative position and attitude determination algorithm for a tumbling spacecraft[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2017, 231(2), 218-228.
[6] SHE Y, SUN J, LI S, et al. Quasi-model free control for the post-capture operation of a non-cooperative target[J]. Acta Astronautica, 2018, 147:59-70.
[7] WANG M, LUO J, YUAN J, et al. Detumbling strategy and coordination control of kinematically redundant space robot after capturing a tumbling target[J]. Nonlinear Dynamics, 2018, 92(3):1023-1043.
[8] MA Z, MA O, SHASHIKANTH B N. Optimal approach to and alignment with a rotating rigid body for capture[J]. Journal of the Astronautical Sciences, 2007, 55(4):407-419.
[9] XIN M, PAN H. Nonlinear optimal control of spacecraft approaching a tumbling target[J]. Aerospace Science and Technology, 2011, 15(2):79-89.
[10] MARTINS-FILHO L, JR G A. Guidance and control of position and attitude for rendezvous and dock/berthing with a noncooperative/target spacecraft[J]. Mathematical Problems in Engineering, 2014, 842(2):805-808.
[11] BOYARKO G, YAKIMENKO O, ROMANO M. Optimal rendezvous trajectories of a controlled spacecraft and a tumbling object[J]. Journal of Guidance, Control, and Dynamics, 2015, 34(4):1239-1252.
[12] STONEMAN S, LAMPARIELLO R. A nonlinear optimization method to provide real-time feasible reference trajectories to approach a tumbling target satellite[C]//International Symposium on Artificial Intelligence, Robotics and Eutomation in Space, 2016.
[13] LI Q, YUAN J, ZHANG B, et al. Model predictive control for autonomous rendezvous and docking with a tumbling target[J]. Aerospace Science & Technology, 2017, 69:700-711.
[14] ZAGARIS C, ROMANO M. Reachability analysis of planar spacecraft docking with rotating body in close proximity[J]. Journal of Guidance, Control, and Dynamics, 2018, 41(6):1413-1419.
[15] 李鹏, 岳晓奎, 袁建平. 对翻滚非合作目标终端逼近的姿轨耦合退步控制[J]. 哈尔滨工业大学学报, 2013, 45(1):94-100. LI P, YUE X K, YUAN J P. Coupled backstepping control for spacecraft to approach with a tumbling non-cooperative object during the final phase[J]. Journal of Harbin Institute of Technology, 2013, 45(1):94-100(in Chinese).
[16] 姜博严, 胡庆雷, 石忠, 等. 与自由翻滚目标近距离段交会对接的相对姿轨耦合控制[J]. 宇航学报, 2014, 35(1):54-60. JIANG B Y, HU Q L, SHI Z, et al. Relative position and attitude coupled controller design for approaching and docking with a freely tumbling target[J]. Journal of Astronautics, 2014, 35(1):54-60(in Chinese).
[17] 刘将辉, 李海阳. 对失控翻滚目标逼近的增广比例导引律控制[J]. 系统工程与电子技术, 2018, 40(10):2311-2316. LIU J H, LI H Y. Augmented proportional navigation control for approach to uncontrolled tumbling satellite[J]. Systems Engineering and Electronics, 2018, 40(10):2311-2316(in Chinese).
[18] 孙冲, 袁建平, 万文娅, 等. 自由翻滚故障卫星外包络抓捕及抓捕路径优化[J]. 航空学报, 2018, 39(11):322192. SUN C, YUAN J P, WAN W Y, et al. Outside envelop grasping method and approaching trajectory optimization for tumbling malfunctional satellite capture[J]. Acta Aeronaustica et Astronautica Sinica, 2018, 39(11):322192(in Chinese).
[19] BREGER L S, HOW J P. Safe trajectories for autonomous rendezvous of spacecraft[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(5):1478-1489.
[20] PARK H, CAIRANO S D, KOLMANOYSKY I. Model predictive control for spacecraft rendezvous and docking with a rotating/tumbling platform and for debris avoidance[C]//American Control Conference. Piscataway, NJ:IEEE Press, 2011:1922-1927.
[21] CHEN T, WEN H, HU H, et al. On-orbit assembly of a team of flexible spacecraft using potential field based method[J]. Acta Astronautica, 2017, 133:221-232.
[22] DONG H, HU Q, AKELLA M R. Safety control for spacecraft autonomous rendezvous and docking under motion constraints[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(7):1-14.
[23] DONG H, HU Q, AKELLA M R. Dual-quaternion-based spacecraft autonomous rendezvous and docking under six-degree-of-freedom motion constraints[J]. Journal of Guidance, Control, and Dynamics, 2017, 41(1):1-13.
[24] 张大伟, 宋申民, 裴润, 等. 非合作目标自主交会对接的椭圆蔓叶线势函数制导[J]. 宇航学报, 2010, 31(10):2259-2268. ZHANG D W, SONG S M, PEI R, et al. Ellipse cissoid-based potential function guidance for autonomous rendezvous and docking with non-cooperative target[J]. Journal of Astronautics, 2010, 31(10):2259-2268(in Chinese).
[25] ZHU S, SUN R, WANG J, et al. Robust model predictive control for multi-step short range spacecraft rendezvous[J]. Advances in Space Research, 2018, 62(1):111-126.
[26] FENG L, NI Q, BAI Y, et al. Optimal sliding mode control for spacecraft rendezvous with collision avoidance[C]//Evolutionary Computation. Piscataway, NJ:IEEE Press, 2016:2661-2668.
[27] CAO L, QIAO D, XU J. Suboptimal artificial potential function sliding mode control for spacecraft rendezvous with obstacle avoidance[J]. Acta Astronautica, 2018, 143:133-146.
[28] NICOLETTA B, ELISA C, MATTEO D, et al. Obstacle avoidance with potential field applied to a rendezvous maneuver[J]. Applied Sciences, 2017, 7(10):1042.
[29] 刘将辉, 李海阳. 对失控翻滚目标逼近的神经网络自适应滑模控制[J]. 宇航学报, 2019, 40(6):684-693. LIU J H, LI H Y. Adaptive sliding mode control based on neural network for approaching to an uncontrolled tumbling satellite[J]. Journal of Astronautics, 2019, 40(6):684-693(in Chinese).
[30] SHIN H S, LI K B, TSOURDOS A. A new three-dimensional sliding mode guidance law variation with finite time convergence[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(5):2221-2232.
文章导航

/