研究了运用压电陶瓷作动器对碳纤维增强复合材料(CFRP)格栅反射器的型面主动控制。首先,采用了一种具有独立电压自由度的梁单元,以及考虑高阶剪切变形的板单元,对主控格栅反射器进行有限元建模;运用能量变分哈密尔顿原理推导了主控格栅反射器的有限元控制方程,并给出了反射面型面残余均方根(RMS)误差最小的电压最优控制方法。然后,研究了在典型载荷下,反射面残余RMS误差最小的PZT作动器位置分布的优化配置问题;提出了一种将遗传算法和梯度投影方法相结合的改进优化方法,用来求出在限定作动器数量的条件下,作动器几何位置的优化配置,使控制后反射面的残余RMS误差最小;给出的数值算例验证了方法的正确性和有效性。最后,研制了格栅反射器型面主动控制的实验样机,针对反射器的初始制造误差进行了型面主动控制,验证了控制方法的可行性和有效性。
In this paper, the piezoelectric ceramic transducer actuators are used to perform active shape control for Carbon Fiber Reinforced Polymer (CFRP) rib reflector. Firstly, a beam element with independent degrees of voltage and a plate element with higher transverse shear deformation are used to conduct a finite element modeling of the CFRP reflector. Using Hamilton variation formulation, the governing equation of the finite element model is derived, developing an optimized reflector surface shape controller that minimizes the Root Mean Square (RMS) error. Then, the placement optimization of PZT actuators is investigated under several typical loads. To minimizing the residual RMS error of the reflector, an optimization method combining the adaptive genetic algorithm with the gradient projection method is proposed to solve the placement optimization of the actuators with a certain number. Numerical examples show the validity and the effectiveness of the proposed method. Finally, an experimental prototype is made to verify the proposed controlling method. The results proved the feasibility and the effectiveness of the proposed method.
[1] PEARSON J, MOORE J, FANG H. Large and high precision inflatable membrane reflector:AIAA-2010-2500[R]. Reston, VA:AIAA, 2010.
[2] LANG M, BAIER H, ERNST T. High precision thin shell reflectors-design concepts, structural optimization and shape adjustment techniques[C]//Proceedings of the European Conference on Spacecraft Structures, Materials and Mechanical Testing, 2005:1-10.
[3] SHI H, YUAN S, YANG B. New methodology of surface mesh geometry design for deployable mesh reflectors[J]. Journal of Spacecraft & Rockets, 2018, 55(2):266-281.
[4] YUAN S, YANG B, FANG H. Improvement of surface accuracy for large deployable mesh reflectors:AIAA-2016-5571[R]. Reston, VA:AIAA, 2016.
[5] SOYKASAP Ö, TAN L T. High-precision offset stiffened spring-back composite reflectors[J]. AIAA Journal, 2011, 49(10):2144-2151.
[6] TABATA M, NATORI M C. Active shape control of a deployable space antenna reflector[J]. Journal of Intelligent Material Systems & Structures, 1996, 7(2):235-240.
[7] FANG H, QUIJQANO U, WANG K W, et al. High-precision adaptive control of large reflector surface[R]. Washington, D.C.:NASA, 2008.
[8] WANG Z, LI T, DENG H. Form-finding analysis and active shape adjustment of cable net reflectors with PZT actuators[J]. Journal of Aerospace Engineering, 2012, 27(3):575-586.
[9] STEIN G, GORINEVSKY D. Design of surface shape control for large two-dimensional arrays[J]. IEEE Transactions on Control Systems Technology, 2005, 13(3):422-433.
[10] ANDOH F, WASHINGTON G, YOON H S, et al. Efficient shape control of distributed reflectors with discrete piezoelectric actuators[J]. Journal of Intelligent Material Systems & Structures, 2004, 15(1):3-15.
[11] LU Y F, YUE H H, DENG Z Q, et al. Research on active control for thermal deformation of precise membrane reflector with boundary SMA actuators[C]//ASME 2014 International Mechanical Engineering Congress and Exposition. New York:ASME, 2014:1-9.
[12] DESMIDT H A, WANG K W, FANG H. Optimized gore/seam cable actuated shape control of gossamer membrane reflectors[J]. Journal of Spacecraft & Rockets, 2007, 44(5):1122-1130.
[13] WU K, FANG H, LAN L, et al. Shape control of a CFRC reflector with PZT and MFC actuators:AIAA-2018-1197[R]. Reston, VA:AIAA, 2018.
[14] 宋祥帅, 王恩美, 穆瑞楠, 等. 格栅反射器型面的主动控制[J]. 航空学报, 2018, 39(6):221541. SONG X S, WANG E M, MU R N, et al. Active shape control of a reflector with PZT actuators assembled on ribs[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(6):221541(in Chinese).
[15] SULEMAN A, GONCALVES M. Multi-objective optimization of an adaptive composite plate using the physical programming approach[J]. Journal of Intelligent Material Systems & Structures, 1999, 10(1):56-70.
[16] ADALI S, JR J C B, SADEK I S, et al. Robust shape control of reams with load uncertainties by optimally placed piezo actuators[J]. Structural & Multidisciplinary Optimization, 2000, 19(4):274-281.
[17] ALDRAIHEM J, SINGH T, WETHERHOLD R C. Optimal size and location of piezoelectric actuator/sensors:Practical considerations[J]. Journal of Guidance, Control, and Dynamics, 2000, 23(3):509-515.
[18] BARBONI R, MANNINI A, FANTINI E, et al. Optimal placement of PZT actuators for the control of beam dynamics[J]. Smart Materials & Structures, 2000, 9(1):110-120.
[19] BRUANT I, COFFIGNAL G, LENE F, et al. A methodology for determination of piezoelectric actuator and sensor location on beam structures[J]. Journal of Sound & Vibration, 2001, 243(5):861-882.
[20] DONG Y, HUANG H. Truss topology optimization by using multi-point approximation and GA[J]. Chinese Journal of Computational Mechanics, 2004, 21(6):746-751.
[21] AN H, XIAN K, HUANG H. Actuator placement optimization for adaptive trusses using a two-level multipoint approximation method[J]. Structural & Multidisciplinary Optimization, 2016, 53(1):29-48.
[22] LIU S, LIN Z. Integrated design optimization of voltage channel distribution and control voltages for tracking the dynamic shapes of smart plates[J]. Smart Materials & Structures, 2010, 19(12):125013.
[23] REDDY J N. On laminated composite plates with integrated sensors and actuators[J]. Engineering Structures, 1999, 21(7):568-593.
[24] CHOPRA I, SIROHI J. Smart structures theory[M]. Cambridge:Cambridge University Press, 2013.
[25] BATHE K J. Finite element method[M]. New York:Wiley, 2008.
[26] MICHALEWICZ Z. Genetic algorithms, numerical optimization, and constraints[C]//Proceedings of the 6th International Conference on Genetic Algorithms,1995:1-8.
[27] DAI G M, MAHAJAN V N. Non-recursive determination of orthonormal polynomials with matrix formulation[J]. Optics Letters, 2007, 32(1):74-76.