电子电气工程与控制

混合小推力航天器轨道保持高性能滑模控制

  • 陈弈澄 ,
  • 齐瑞云 ,
  • 张嘉芮 ,
  • 王焕杰
展开
  • 1. 南京航空航天大学 自动化学院, 南京 211100;
    2. 南京航空航天大学 先进飞行器导航、控制与健康管理工业和信息化部重点实验室, 南京 211100;
    3. 上海航天控制技术研究所, 上海 201109;
    4. 上海市空间智能控制技术重点实验室, 上海 201109

收稿日期: 2018-12-03

  修回日期: 2019-01-14

  网络出版日期: 2019-07-24

基金资助

国家自然科学基金(61873127);航空科学基金(2017ZA52013);江苏省"六大人才高峰"高层次人才资助项目(HKHT-010)

High-performance sliding mode control for orbit keeping of spacecraft using hybrid low-thrust propulsion

  • CHEN Yicheng ,
  • QI Ruiyun ,
  • ZHANG Jiarui ,
  • WANG Huanjie
Expand
  • 1. College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China;
    2. Key Laboratory of Navigation, Control and Health-Management Technologies of Advanced Aerocraft, Ministry of Industry and Information Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China;
    3. Shanghai Aerospace Control Technology Institute, Shanghai 201109, China;
    4. Shanghai Key Laboratory of Aerospace Intelligent Control Technology, Shanghai 201109, China

Received date: 2018-12-03

  Revised date: 2019-01-14

  Online published: 2019-07-24

Supported by

National Natural Science Foundation of China (61873127); Aeronautical Science Foundation of China(2017ZA52013); "Six Talents Peaks" High-level Talents Funding Project in Jiangsu Province of China (HKHT-010)

摘要

针对采用太阳帆、太阳电混合小推力推进的航天器,研究了其在日心悬浮轨道的保持控制问题。为解决已有控制方法中未综合考虑内部未建模动态和外部未知扰动的问题,以及进一步提高系统控制性能,设计了一种高性能滑模控制策略。首先,考虑模型不确定性,建立了混合小推力航天器在日心悬浮轨道柱面坐标系的动力学方程;其次,基于改进型条件积分滑模面和径向基(RBF)神经网络设计了控制律,结合自适应方法在线估计不确定参数;接着,将求取的虚拟控制量在推进剂最优条件下转换成实际控制量,即太阳帆姿态角和太阳电推进力;最后,数值仿真验证了上述设计方法提高了系统鲁棒性,减小了轨道位置超调,并且混合推进相比于单一太阳帆推进,在更短收敛时间内控制精度提高了4个数量级,相比于单一太阳电推进,一年可以节省约89.6%的推进剂。

本文引用格式

陈弈澄 , 齐瑞云 , 张嘉芮 , 王焕杰 . 混合小推力航天器轨道保持高性能滑模控制[J]. 航空学报, 2019 , 40(7) : 322827 -322827 . DOI: 10.7527/S1000-6893.2018.22827

Abstract

For a spacecraft using hybrid solar sail and solar electric propulsion, the station-keeping control of the heliocentric displaced orbit is investigated. To solve the problem that internal unmodeled dynamics and external unknown disturbances are not considered comprehensively in the existing methods, and to further improve the performance of the system, a high-performance sliding mode control strategy is designed. Firstly, considering the uncertainty of the model, the dynamic equation of the hybrid low-thrust spacecraft keeping on heliocentric displaced orbit is established in the cylindrical coordinate system. Secondly, the control law is designed based on the improved conditional integral sliding surface and Radial Basis Function (RBF) neural network, and the uncertain parameters are estimated online by combining the adaptive method. Then, under the optimum condition of propellant, the virtual control variables are converted into actual control variables, namely attitude angles of solar sail and solar electric propulsion. Finally, numerical simulation verifies that the above design enhances the robustness of the system, reduces the overshoot of orbit position, and hybrid propulsion improves the control accuracy by 4 orders of magnitude in shorter convergence time compared to single solar sail propulsion, while it can save about 89.6% propellants a year compared to single solar electric propulsion.

参考文献

[1] 龚胜平, 李俊峰. 太阳帆航天器动力学与控制[M]. 北京:清华大学出版社, 2015:2-3. GONG S P, LI J F. Dynamics and control of solar sail spacecraft[M]. Beijing:Tsinghua University Press, 2015:2-3(in Chinese).
[2] 胡海岩. 太阳帆航天器的关键技术[J]. 深空探测学报, 2016, 3(4):334-344. HU H Y. Key technologies of solar sail spacecraft[J]. Journal of Deep Space Exploration, 2016, 3(4):334-344(in Chinese).
[3] TSUDA Y, MORI O, FUNASE R, et al. Achievement of IKAROS-Japanese deep space solar sail demonstration mission[J]. Acta Astronautica, 2013, 82(2):183-188.
[4] 张海博, 胡庆雷, 马广富, 等. 考虑输入饱和的多航天器系统姿轨耦合分布式协同跟踪控制[J]. 宇航学报, 2013, 34(10):1337-1345. ZHANG H B, HU Q L, MA G F, et al. Multiple spacecraft systems coupled attitude and orbit distributed coordinated tracking control with input saturation[J]. Journal of Astronautics, 2013, 34(10):1337-1345(in Chinese).
[5] 吴锦杰, 刘昆, 韩大鹏. 考虑输入饱和的航天器相对运动鲁棒自适应控制[J]. 航空学报, 2013, 34(4):890-901. WU J J, LIU K, HAN D P. Robust adaptive control for relative motion of spacecraft under input saturation[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(4):890-901(in Chinese).
[6] 史晓宁, 荣思远, 白瑜亮. 太阳帆航天器行星分段捕获控制方法研究[J]. 上海航天, 2016, 33(2):87-93. SHI X N, RONG S Y, BAI Y L. Study on solar sail planet-centered segmented capture method[J]. Aerospace Shanghai, 2016, 33(2):87-93(in Chinese).
[7] FARRES A. Transfer orbits to L4 with a solar sail in theearth-sun system[J]. Acta Astronautica, 2017, 137:78-90.
[8] HEILIGERS J. Non-keplerian orbits using hybrid solar sail propulsion for earth applications[D]. Scotland:University of Strathclyde, 2012:24-25.
[9] HEILIGERS J, MCINNES C R, BIGGS J D, et al. Displaced geostationary orbits using hybrid low-thrust propulsion[J]. Acta Astronautica, 2012, 71:51-67.
[10] ANDERSON P, MACDONALD M. Static highly elliptical orbits using hybrid low-thrust propulsion[J]. Journal of Guidance, Control, and Dynamics, 2013, 36(3):870-880.
[11] MENGALI G, QUARTA A A. Trajectory design with hybrid low-thrust propulsion system[J]. Journal of Guidance, Control, and Dynamics, 2015, 30(2):419-426.
[12] 孙冲, 袁建平, 方群, 等. 采用虚拟引力场的太阳帆/电推进混合推力机动轨道设计[J]. 西北工业大学学报, 2018, 36(4):618-626. SUN C, YUAN J P, FANG Q, et al. Hybrid low thrust propulsion trajectory design and optimization using virtual gravity,method[J]. Journal of Northwestern Polytechnical University, 2018, 36(4):618-626(in Chinese).
[13] 张楷田. 两类非开普勒轨道的动力学与控制研究[D]. 合肥:中国科学技术大学, 2016:1-6. ZHANG K T. Dynamics and control of two types of the non-keplerian orbits[D]. Hefei:University of Science and Technology of China, 2016:1-6(in Chinese).
[14] FORWARD R L. Light-levitated geostationary cylindrical orbits[J]. Journal of the Astronautical Sciences, 1981, 29(1):73-80.
[15] MCINNES C R, COLIN R. Passive control of displaced solar sail orbits[J]. Journal of Guidance, Control, and Dynamics, 1998, 21(6):975-982.
[16] GONG S P, LI J F, BAOYIN H X. Passive stability design for solar sail on displaced orbits[J]. Journal of Spacecraft and Rockets, 2007, 44(5):1071-1080.
[17] BOOKLESS J, MCINNES C R. Dynamics and control of displaced periodic orbits using solar-sail propulsion[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(3):527-537.
[18] 钱航, 郑建华, 于锡峥, 等. 太阳帆航天器悬浮轨道动力学与控制[J]. 空间科学学报, 2013, 33(4):458-464. QIAN H, ZHENG J H, YU X Z, et al. Dynamics and control of displaced orbits for solar sail spacecraft[J].Chinese Journal of Space Science, 2013, 33(4):458-464(in Chinese).
[19] 张楷田, 楼张鹏, 王永, 等. 混合小推力航天器日心悬浮轨道保持控制[J]. 航空学报, 2015, 36(12):3910-3918. ZHANG K T, LOU Z P, WANG Y, et al. Station-keeping control of spacecraft using hybrid low-thrust propulsion in heliocentric displaced orbits[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(12):3910-3918(in Chinese).
[20] 曾祥远. 深空探测太阳帆航天器新型轨道设计[D]. 北京:清华大学, 2013:11-12. ZENG X Y. Solar sail spacecraft novel trajectory design in deep space exploration[D]. Beijing:Tsinghua University, 2013:11-12(in Chinese).
[21] 刘林, 侯锡云. 深空探测器轨道力学[M]. 北京:电子工业出版社, 2012:1-13. LIU L, HOU X Y. Dynamics in deep space exploration[M]. Beijing:Publishing House of Electronics Industry,2012:1-13(in Chinese).
[22] SMITH S W, SONG H, BAKER J R, et al. Flexible models for solar sail control[C]//46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference. Reston, VA:AIAA, 2005.
[23] PENG H, ZHAO J, WU Z, et al. Optimal periodic controller for formation flying on libration point orbits[J]. Acta Astronautica, 2011, 69(7):537-550.
[24] KULKARNI J E, CAMPBELL M E, DULLERUD G E. Stabilization of spacecraft flight in halo orbits:An H approach[J]. IEEE Transactions on Control Systems Technology, 2006, 14(3):572-578.
[25] 王晓晖, 李爽. 考虑动态不确定因素的深空探测器任务规划[J]. 中国空间科学技术, 2016, 36(6):29-37. WANG X H, LI S. A missionplanning method for deep space explorer considering dynamic uncertainties[J]. Chinese Space Science and Technology, 2016, 36(6):29-37(in Chinese).
[26] POLYAKOV A, FRIDMAN L. Stability notions and Lyapunov functions for sliding mode control systems[J]. Journal of the Franklin Institute, 2014, 351(4):1831-1865.
[27] SESHAGIRI S, KHALIL H K. Robust output feedbackregulation of minimum-phase nonlinear systems using conditional integrators[J]. Automatica, 2005, 41(1):43-54.
[28] 李鹏, 马建军, 李文强, 等. 一类不确定非线性系统的改进积分型滑模控制[J]. 控制与决策, 2009, 24(10):1463-1466. LI P, MA J J, LI W Q, et al. Improved integral sliding mode control for a class of nonlinear uncertain systems[J]. Control and Decision,2009, 24(10):1463-1466(in Chinese).
[29] FONOD R, KROKAVEC D. Actuator fault estimation using neuro-sliding mode observers[C]//IEEE International Conference on Intelligent Engineering Systems. Piscataway, NJ:IEEE Press, 2012.
[30] SANNER R M, SLOTINE J J E. Gaussian networks for direct adaptive control[J]. IEEE Transaction on Neural Network, 1992, 3(6):837-863.
[31] 张合新, 范金锁, 孟飞, 等. 一种新型滑模控制双幂次趋近律[J]. 控制与决策, 2013, 28(2):289-293. ZHANG H X, FAN J S, MENG F, et al. A new double power reaching law for sliding mode control[J]. Control and Decision, 2013, 28(2):289-293(in Chinese).
[32] TAO G. Adaptive control design and analysis[M]. New York:Wiley-IEEE Press, 2003:80.
[33] XU H J, MIRMIRANI M D, IOANNOU P A. Adaptive sliding mode control design for a hypersonic flight vehicle[J]. Journal of Guidance, Control, and Dynamics, 2004, 27(5):829-838.
[34] SCHMIDT G R, PATTERSON M J, BENSON S W. The NASA evolutionary xenon thruster (NEXT):The next step for U.S. deep space propulsion[C]//59th International Astronautical Congress, 2008.
文章导航

/