[1] WELLS D. NASA green flight challenge:Conceptual design approaches and technologies to enable 200 passenger miles per gallon[C]//11th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference, including the AIAA Balloon Systems Conference and 19th AIAA Lighter-Than-Air Technology Conference. Reston, VA:AIAA, 2011.
[2] 黄俊, 杨凤田. 新能源电动飞机发展与挑战[J]. 航空学报, 2016, 37(1):57-68. HUANG J, YANG F T. Development and challenges of electric aircraft with new energies[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1):57-68(in Chinese).
[3] KIM H, BROWN G, FELDER J. Distributed turboelectric propulsion for hybrid wing body aircraft[C]//Proceedings of 2008 International Powered Lift Conference. London:Royal Aeronautical Society, 2008.
[4] TIAN W. Review of more-electric aircrafts[C]//Proceedings of 2016 IEEE Chinese Guidance, Navigation and Control Conference, 2016.
[5] KIM H. Distributed propulsion vehicles[C]//27th International Congress of the Aeronautical Sciences, 2010.
[6] 孔祥浩, 张卓然, 陆嘉伟, 等. 分布式电推进飞机电力系统研究综述[J]. 航空学报, 2018, 39(1):021651. KONG X H, ZHANG Z R, LU J W, et al. Review of electric power system of distributed electric propulsion aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1):021651(in Chinese).
[7] AMIR S, GEORGIOS D, RITI S. Challenges of future aircraft propulsion:A review of distributed propulsion technology and its potential application for the all electric commercial aircraft[J]. Progress in Aerospace Science, 2011, 47:369-391.
[8] MICHAEL D P, BRIAN J G. Wing aerodynamic analysis incorporating one-way interaction with distributed propellers[C]//14th AIAA Aviation Technology, Integration, and Operations Conference. Reston, VA:AIAA, 2014.
[9] MOOREL M, FREDERICKS B, BORER N. Drag reduction through distributed electric propulsion[C]//14th AIAA Aviation Technology, Integration, and Operations Conference. Reston, VA:AIAA, 2014.
[10] SRILATHA A. Design of a 4-seat, general aviation, electric aircraft[D]. San Jose:San Jose State University, 2012.
[11] 王科雷, 周洲, 祝小平, 等. 低雷诺数多螺旋桨/机翼耦合气动设计研究[J]. 航空学报, 2018, 39(10):121918. WANG K L, ZHOU Z, ZHU X P, et al. Research on multi-propeller/wing coupled aerodynamic design at low Reynolds numbers[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(10):121918(in Chinese).
[12] BORER N, PATTERSON M, VIKEN J, et al. Design and performance of the NASA SCEPTOR distributed electric propulsion flight demonstrator[C]//16th AIAA Aviation Technology, Integration, and Operations Conference. Reston, VA:AIAA, 2016:1-20.
[13] BORER N, DERLAGA J, DEERE K, et al. Comparison of aero-propulsion performance predictions for distributed propulsion configurations[C]//55th AIAA Aerospace Sciences Meeting. Reston, VA:AIAA, 2017:1-16.
[14] PATTERSON M, BORER N. Approach considerations in aircraft with high-lift propeller systems[C]//17th AIAA Aviation Technology, Integration, and Operations Conference. Reston, VA:AIAA, 2017:1-18.
[15] PATTERSON M, DERLAGA J, BORER N. High-lift propeller system configuration selection for NASA's SCEPTOR distributed electric propulsion flight demonstrator[C]//16th AIAA Aviation Technology, Integration, and Operations Conference. Reston, VA:AIAA, 2016:1-19.
[16] PATTERSON M, BORER N, GERMAN B. A simple method for high-lift propeller conceptual design[R]. Washington, D.C.:NASA Langley Research Center, 2016.
[17] PATTERSON M. Conceptual design of high-lift propeller systems for small electric aircraft[D]. Georgia:Georgia Institute of Technology, 2016.
[18] LARRABEE E. Practical design of minimum induced loss propeller:SAE Preprint 790585[R]. 1979.
[19] RAJAGOPALAN R, FANUCCI J. Finite-difference model for vertical axis wind rotors[J]. Journal of Propulsion and Power, 1985, 1(6):432-436.
[20] RAJAGOPALAN R, ZHANG Z. Performance and flow field of a ducted propeller[C]//AIAA/ASME/SAE/ASEE 25th Joint Propulsion Conference. Reston, VA:AIAA, 1989.
[21] RAJAGOPALAN R, LIM C. Laminar flow analysis of a rotor in hover[J]. Journal of the American Helicopter Society, 1985, 38(3):14-25.
[22] RAJAGOPALAN R, BERG D, KLIMAS P. Development of a three-dimensional model for the darrieus rotor and its wake[J]. Journal of Propulsion and Power, 1995, 11(2):185-195.
[23] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8):1598-1605.
[24] 陈广强, 白鹏, 詹慧玲, 等. 一种推进式螺旋桨无人机滑流效应影响研究[J]. 空气动力学学报, 2015, 33(4):554-562. CHEN G Q, BAI P, ZHAN H L, et al. Numerical simulation study on propeller slipstream effect on unmanned air vehicle with propeller engine[J]. Acta Aerodynamica Sinica, 2015, 33(4):554-562(in Chinese).
[25] TUNG W, JINGXUAN L, HSIANGCHUN K. Aerodynamic analysis of helicopter rotor blade in heavy rain condition[C]//51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston, VA:AIAA, 2013.
[26] LIU Z, ALBERTAIN R, MOSCHETTA J M, et al. Experimental and computational evaluation of small microcoaxial rotor in hover[J]. Journal of Aircraft, 2011, 48(1):220-229.
[27] RITU M E, YUVRAJ D, CHONG Z, et al. Numerical design optimization of the S-76 rotor for hover performance[C]//2018 AIAA Aerospace Sciences Meeting. Reston, VA:AIAA, 2018.
[28] MCKEE J, NAESETH R. Experimental investigation of the drag of flat plates and cylinders in the slipstream of a hovering rotor:NACA-TN-4239[R]. Washington,D.C.:NASA, 1958.
[29] 刘丽娜, 吴国新. 基于Hicks-Henne型函数的翼型参数化设计以及收敛特性研究[J]. 科学技术与工程, 2014, 14(30):151-155. LIU L N, WU G X. Research on application of Hicks-Henne function in airfoil shape parameterization & convergence[J]. Science Technology and Engineering, 2014, 14(30):151-155(in Chinese).
[30] MUKESH R, LINGADURAI K, KARTHICK S. Aerodynamic optimization using proficient optimization algorithms[C]//2012 International Conference on Computing, Communication and Applications (ICCCA), 2012:1-5.
[31] 孙美建, 詹浩. Kriging模型在机翼气动外形优化中的应用[J]. 空气动力学学报, 2011, 29(6):759-764. SUN M J, ZHAN H. Application of Kriging surrogate model for aerodynamic shape optimization of wing[J]. Acta Aerodynamica Sinica, 2011, 29(6):759-764(in Chinese).
[32] SACKS J, WELCH W J, MICHELL T L, et al. Design and analysis of computer experiments[J]. Statistical Science, 1989, 4(4):409-435.
[33] 王琪, 杨晨俊. 基于涡格法的任意环量分布螺旋桨数值设计方法[J]. 中国造船, 2018, 59(2):90-102. WANG Q, YANG C J. A numerical design method for marine propellers with arbitrary distribution of circulation based on vortex lattice method[J]. Shipbuilding of China, 2018, 59(2):90-102(in Chinese).
[34] 范中允, 周洲, 祝小平. 一种可任意给定环量分布的螺旋桨设计方法[J]. 航空动力学报, 2019, 34(2):434-441. FAN Z Y, ZHOU Z, ZHU X P. A design method for propeller with arbitrary circulation distribution[J]. Journal of Aerospace Power, 2019, 34(2):434-441(in Chinese).