流体力学与飞行力学

微波对超声速燃烧火焰结构的影响

  • 孟宇 ,
  • 顾洪斌 ,
  • 张新宇
展开
  • 1. 中国科学院大学 工程科学学院, 北京 100049;
    2. 中国科学院力学研究所 高温气体动力学国家重点实验室, 北京 100190

收稿日期: 2019-06-18

  修回日期: 2019-06-27

  网络出版日期: 2019-07-15

基金资助

国家自然科学基金(11772342)

Influence of microwave on structure of supersonic combustion flame

  • MENG Yu ,
  • GU Hongbin ,
  • ZHANG Xinyu
Expand
  • 1. School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China;
    2. The State Key Laboratory of High Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China

Received date: 2019-06-18

  Revised date: 2019-06-27

  Online published: 2019-07-15

Supported by

National Natural Science Foundation of China (11772342)

摘要

超声速中等离子辅助燃烧是一种具有潜力的助燃方式。通过将低功率微波馈入超燃冲压发动机燃烧室的方式,研究了微波对火焰结构的影响。实验来流马赫数为2.5,常温乙烯燃料从壁面横向射流,以单级凹腔作为火焰稳定器,分别加入500 W和700 W连续2.45 GHz的微波,利用高速相机拍摄火焰CH*发光图像。研究表明微波的加入使超声速火焰稳定结构发生改变,火焰的起始和稳定位置从凹腔剪切层向射流出口转移,表明微波对火焰传播速度或者燃烧反应速率有增强作用。同时利用火焰边界提取和分形几何的方法,发现微波能够增大火焰边界分形维度,分析认为火焰传播速度由于微波的加入而增加,证明小功率的微波对超声速燃烧有促进作用。

本文引用格式

孟宇 , 顾洪斌 , 张新宇 . 微波对超声速燃烧火焰结构的影响[J]. 航空学报, 2019 , 40(12) : 123224 -123224 . DOI: 10.7527/S1000-6893.2019.23224

Abstract

Plasma assisted combustion in supersonic flow is a promising method. The effect of microwave on the flame structure is studied by feeding low-power microwave into the combustor of the scramjet. The combustor inlet flow Mach number is 2.5. Room temperature ethylene is injected perpendicular to the combustor wall. Single stage cavity is used as flame stabilizer, and 500 W and 700 W continuous 2.45 GHz microwave are added into the combustor. A high-speed camera is used to capture flame CH* illuminating images. After the addition of microwave, the stable position of the flame changes from cavity shear layer flame to jet flame, which indicates that the microwave has an effect on the flame propagation speed or the combustion reaction rate. Using the method of flame boundary extraction and fractal geometry, this paper finds that microwave can increase the fractal dimension of flame boundary, indicating that the propagation rate of flame increases due to the addition of microwave. The paper concludes that a low power of microwave can assist supersonic combustion.

参考文献

[1] BILLIG F S. Research on supersonic combustion[J]. Journal of Propulsion and Power, 1993, 9(4):499-514.
[2] JU Y G, SUN W T. Plasma assisted combustion:Dynamics and chemistry[J]. Progress in Energy and Combustion Science, 2015, 48:21-83.
[3] DOOLEY S, WON S H, HEYNE J, et al. The experimental evaluation of a methodology for surrogate fuel formulation to emulate gas phase combustion kinetic phenomena[J]. Combustion and Flame, 2012, 159(4):1444-1466.
[4] ZHU S H, XU X, JI P F. Flame stabilization and propagation in dual-mode scramjet with staged-strut injectors[J]. AIAA Journal, 2017, 55(1):171-179.
[5] ZHANG Y, ZHU S H, CHEN B, et al. Hysteresis of mode transition in a dual-struts based scramjet[J]. Acta Astronautica, 2016, 128:147-159.
[6] ZHU S H, XU X, YANG Q C, et al. Intermittent back-flash phenomenon of supersonic combustion in the staged-strut scramjet engine[J]. Aerospace Science and Technology, 2018, 79:70-74.
[7] ZHANG J L, CHANG J T, MA J C, et al. Investigation of flame establishment and stabilization mechanism in a kerosene fueled supersonic combustor equipped with a thin strut[J]. Aerospace Science and Technology, 2017, 70:152-160.
[8] MASUMOTO R, TOMIOKA S, KUDO K, et al. Experimental study on combustion modes in a supersonic combustor[J]. Journal of Propulsion and Power, 2011, 27(2):346-355.
[9] JU Y G, SUN W T. Plasma assisted combustion:Dynamics and chemistry[J]. Progress in Energy and Combustion Science, 2015, 48:21-83.
[10] JU Y G, SUN W T. Plasma assisted combustion:Progress, challenges, and opportunities[J]. Combustion and Flame, 2015, 162(3):529-532.
[11] STARIKOVSKIY A, ALEKSANDROV N. Plasma-assisted ignition and combustion[J]. Progress in Energy and Combustion Science, 2013, 39(1):61-110.
[12] LI F, YU X L, TONG Y G, et al. Plasma-assisted ignition for a kerosene fueled scramjet at Mach 1.8[J]. Aerospace Science and Technology, 2013, 28(1):72-78.
[13] CAI Z, ZHU J J, SUN M B, et al. Spark-enhanced ignition and flame stabilization in an ethylene-fueled scramjet combustor with a rear-wall-expansion geometry[J]. Experimental Thermal and Fluid Science, 2018, 92:306-313.
[14] FENG R, LI J, WU Y, et al. Experimental investigation on gliding arc discharge plasma ignition and flame stabilization in scramjet combustor[J]. Aerospace Science and Technology, 2018, 79:145-153.
[15] LI X H, YANG L C, PENG J B, et al. Cavity ignition of liquid kerosene in supersonic flow with a laser-induced plasma[J]. Optics Express, 2016, 24(22):25362.
[16] AN B, WANG Z G, YANG L C, et al. Experimental investigation on the impacts of ignition energy and position on ignition processes in supersonic flows by laser induced plasma[J]. Acta Astronautica, 2017, 137:444-449.
[17] JAGGERS H C, VON ENGEL A. The effect of electric fields on the burning velocity of various flame[J]. Combustion and Flame, 1971, 16(3):275-285.
[18] SHINOHARA K, TAKADA N, SASAKI K. Enhancement of burning velocity in premixed burner flame by irradiating microwave power[J]. Journal of Physics D:Applied Physics, 2009, 42(18):182008.
[19] KHODATAEV K V. Microwave discharges and possible applications in aerospace technologies[J]. Journal of Propulsion and Power, 2008, 24(5):962-972.
[20] BAUROV A Y, SHIBKOVA L V, SHIBKOV V M, et al. External combustion of high-speed multicomponent hydrocarbon-air flow under conditions of low-temperature plasma[J]. Moscow University Physics Bulletin, 2013, 68(4):293-298.
[21] SHIBKOV V M, SHIBKOVA L V, KARACHEV A A, et al. The spatial-temporal evolution of combustion under conditions of low temperature discharge plasma of liquid alcohol injected into an air stream[J]. Moscow University Physics Bulletin, 2012, 67(1):138-142.
[22] SHIBKOV V M, SHIBKOVA L V, GROMOV V G, et al. Influence of surface microwave discharge on ignition of high-speed propane-air flows[J]. High Temperature, 2011, 49(2):155-167.
[23] SHIBKOV V M, SHIBKOVA L V. Parameters of the flame due to surface-microwave discharge-initiated inflammation of thin alcohol films[J]. Technical Physics, 2010, 55(1):58-65.
[24] STOCKMAN E S, ZAIDI S H, MILES R B, et al. Measurements of combustion properties in a microwave enhanced flame[J]. Combustion and Flame, 2009, 156(7):1453-1461.
[25] MICHAEL J B, CHNG T L, MILES R B. Sustained propagation of ultra-lean methane/air flames with pulsed microwave energy deposition[J]. Combustion and Flame, 2013, 160(4):796-807.
[26] OMBRELLO T, WON S H, JU Y G, et al. Flame propagation enhancement by plasma excitation of oxygen. Part II:Effects of O2(a1Δg)[J]. Combustion and Flame, 2010, 157(10):1916-1928.
[27] 张贵新, 侯凌云, 刘永喜, 等.基于圆柱形谐振腔的微波点火方法[J]. 高电压技术, 2016, 42(6):1914-1920. ZHANG G X, HOU L Y, LIU Y X, et al. Microwave ignition method based on cylindrical resonant cavity[J]. High Voltage Engineering, 2016, 42(6):1914-1920(in Chinese).
[28] 黄健, 王志, 兰光, 等. 微波等离子体点火的试验研究[J]. 工程热物理学报, 2015, 36(3):665-667. HUANG J, WANG Z, LAN G, et al. Experimental investigation of microwave plasma ignition[J]. Journal of Engineering Thermophysics, 2015, 36(3):665-667(in Chinese).
[29] 兰光, 王志. 内燃机微波点火研究进展综述[J]. 车用发动机, 2012(3):1-6,11. LAN G, WANG Z. Research progress of ICE microwave ignition[J]. Vehicle Engines, 2012(3):1-6,11(in Chinese).
[30] 兰光. 内燃机新型点火方式——微波点火的试验研究与机理模拟[D]. 北京:清华大学, 2012:37-44. LAN G. Experimental study and mechanism simulation of new ignition mode of internal combustion engine-Microwave ignition[D]. Beijing:Tsinghua University, 2012:37-44(in Chinese).
[31] 王冬雪. 微波等离子体点火与助燃放电装置的理论模拟与实验研究[D]. 大连:大连理工大学, 2014:10-11. WANG D X. Theoretical simulation and experimental study of the discharge device of microwave plasma ignition and assisted combustion[D]. Dalian:Dalian University of Technology, 2014:10-11(in Chinese).
[32] WANG Z P, GU H B, CHENG L W, et al. CH* luminance distribution application and a one-dimensional model of the supersonic combustor heat release quantization[J]. International Journal of Turbo & Jet-Engines, 2019, 36(1):45-50.
[33] RAO X, HEMAWAN K, WICHMAN I, et al. Combustion dynamics for energetically enhanced flames using direct microwave energy coupling[J]. Proceedings of the Combustion Institute, 2011, 33(2):3233-3240.
[34] YUAN Y M, ZHANG T C, YAO W, et al. Characterization of flame stabilization modes in an ethylene-fueled supersonic combustor using time-resolved CH* chemiluminescence[J]. Proceedings of the Combustion Institute, 2017, 36(2):2919-2925.
[35] TIAN Y, YANG S H, LE J L, et al. Investigation of combustion and flame stabilization modes in a hydrogen fueled scramjet combustor[J]. International Journal of Hydrogen Energy, 2016, 41(42):19218-19230.
[36] 程柳维, 仲峰泉, 杜蒙蒙, 等. 基于分形几何的超声速燃烧火焰形态表征方法研究[J]. 实验流体力学, 2019, 33(1):97-102. CHENG L W, ZHONG F Q, DU M M, et al. Study of characterization methods of supersonic combustion flame based on fractal geometry[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(1):97-102(in Chinese).
文章导航

/