In the terminal guidance section of large caliber naval gun networked guided projectiles while striking near shore maneuver target, an Integrated Guidance and Control (IGC) method in space based on Block Dynamic Surface and Extended States Observer (BDSESO) is proposed with multiple constraints, including impact angle, control limitation, and measurement Line of Sight (LOS) rate limitation. The strict block feedback cascade model of rolling guided projectile IGC in space is constructed, and the ESO is used to estimate LOS rate and uncertain disturbances inside and outside the system such as target maneuvering, model error, and wind. Aiming at zeroing the LOS angle tracking error and LOS rate in finite time, a nonsingular terminal sliding mode is designed with the adaptive exponential reaching law. The adaptive dynamic surface control is adopted to effectively stabilize the cascade system and to avoid differential explosion. And in order to compensate the saturated nonlinearity of control constraints, the adaptive Nussbaum gain function is introduced. The LOS angle tracking error and LOS rate are finite time convergent and the whole system states are uniformly and ultimately bounded, which are proved by Lyapunov theory. A hardware-in-the-loop simulation experiment shows this method has good guidance performance in the guided projectile process while striking targets with different maneuvering forms.
[1] 邱志明, 孙世岩, 易善勇, 等. 舰炮武器系统技术发展趋势研究[J]. 舰船科学与技术, 2008, 30(2):21-26. QIU Z M, SUN S Y, YI S Y, et al. Research on development of shipboard gun weapon system technology[J]. Ship Science & Technology, 2008, 30(2):21-26(in Chinese).
[2] 孙世岩, 朱惠民, 宋歆, 等. 舰炮制导炮弹发展研究[J]. 火力控制与指挥, 2016, 41(12):1-4. SUN S Y, ZHU H M, SONG X, et al. Study of developing naval gun guided ammunition[J]. Fire Control & Command Control, 2016, 41(12):1-4(in Chinese).
[3] RAN M P, WANG Q, HOU D L, et al. Backstepping design of missile guidance and control based on adaptive fuzzy sliding mode control[J]. Chinese Journal of Aeronautics, 2014, 27(3):634-642.
[4] 姜尚, 田福庆, 孙世岩, 等. 考虑自动驾驶仪动态特性与攻击角约束的模糊自适应动态面末制导律[J]. 系统工程与电子技术, 2019, 41(2):389-401. JIANG S, TIAN F Q, SUN S Y, et al. Fuzzy adaptive dynamic surface terminal guidance law considering autopilot and impact angle constraints[J]. System Engineering & Electronics, 2019, 41(2):389-401(in Chinese).
[5] WILLIAMS D, RICHMAN J, FRIEDLAND B. Design of an integrated strapdown guidance and control system for a tactical missile[C]//Proceedings of AIAA Guidance and Control Conference. Reston, VA:AIAA, 1983:57-66.
[6] VADDI S, MENON P K, OHLMEYER E J. Numerical state-dependent Riccati equation approach for missile integrated guidance control[J]. Journal of Guidance Control and Dynamics, 2012, 32(2):699-703.
[7] 杨靖, 王旭刚, 王中原, 等. 基于滑模观测器的鲁棒变结构一体化导引控制律[J]. 兵工学报, 2017, 38(2):246-253. YANG J, WANG X G, WANG Z Y, et al. Sliding-mode-observer-based robust variable structure control for integrated autopilot-guidance[J]. Acta Armamentarii, 2017, 38(2):246-253(in Chinese).
[8] WEN C Y, ZHOU J, LIU Z T, et al. Robust adaptive control of uncertain nonlinear systems in the presence of input saturation and external disturbance[J]. IEEE Transactions on Automatic Control, 2011, 56(7):1672-1678.
[9] 周觐, 雷虎民, 李炯, 等. 基于神经网络的导弹制导控制一体化反演设计[J]. 航空学报, 2015, 36(5):1661-1672. ZHOU J, LEI H M, LI J, et al. Integrated missile guidance and control design based on neural network and back-stepping control theory[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(5):1661-1672(in Chinese).
[10] 张尧, 郭杰, 唐胜景, 等. 导弹制导与控制一体化三通道解耦设计方法[J]. 航空学报, 2014, 35(12):3438-3450. ZHANG Y, GUO J, TANG S J, et al. Integrated missile guidance and control three-channel decoupling design method[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(12):3438-3450(in Chinese).
[11] SHTESSEL Y B, TOURNES C H. Integrated higher-order sliding mode guidance and autopilot for dual-control missiles[J]. Journal of Guidance Control Dynamics, 2012, 32(1):79-94.
[12] WU P, YANG M. Adaptive integrated guidance and control design for missile with terminal impact angle constraint based on sliding mode control[J]. Journal of Systems Engineering and Electronics, 2010, 21(4):623-628.
[13] KUMAR S R, RAO S, GHOSE D. Nonsingular terminal sliding mode guidance with impact angle constraints[J]. Journal of Guidance Control and Dynamics, 2014, 37(4):1114-1130.
[14] GUO C, LIANG X G. Integrated guidance and control based on block backstepping sliding mode and dynamic control allocation[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2015, 229(9):1559-1574.
[15] HAN J Q. From PID to active disturbance rejection control[J]. IEEE Transactions on Industrial Electronics, 2009, 56(3):900-906.
[16] ZHU Z, XU D, LIU J M, et al. Missile guidance law based on extended state observer[J]. IEEE Transactions on Industrial Electronics, 2013, 60(12):5882-5891.
[17] 韩子鹏. 弹箭外弹道学[M]. 北京:北京理工大学出版社, 2014:467-472. HAN Z P. Exterior ballistics of projectiles and rockets[M]. Beijing:Beijing Institute of Technology Press, 2014:467-472(in Chinese).
[18] FENG Y, YU X H, MAN Z H. Non-singular terminal sliding mode control of rigid manipulators[J]. Automatica, 2002, 38:2159-2167.
[19] NUSSBAUM R D. Some remarks on a conjecture in parameter adaptive control[J]. Systems and Control Letters, 1983, 3(5):243-246.
[20] HOU Z, DUAN G R. Adaptive dynamic surface control for integrated missile guidance and autopilot[J]. International Journal of Automation and Computing, 2011, 8(1):122-127.
[21] LI T S, LI Y M. Direct adaptive fuzzy back-stepping control of uncertain nonlinear systems in the presence of input saturation[J]. Neural Computing and Applications, 2013, 23(5):1207-1216.
[22] YAMASAKI T, BALARISHNAN S N, TAKANO H, et al. Second order sliding mode-based intercept guidance with uncertainty and disturbance compensation[J]. AIAA Guidance, Navigation and Control, 2013, 39(5):1-17.