电子电气工程与控制

滚转舰炮制导炮弹的空间多约束导引与控制一体化设计

  • 姜尚 ,
  • 田福庆 ,
  • 孙世岩 ,
  • 梁伟阁
展开
  • 海军工程大学 兵器工程学院, 武汉 430033

收稿日期: 2019-04-19

  修回日期: 2019-06-14

  网络出版日期: 2019-07-15

基金资助

海军武器装备预先研究项目(3020801010105)

Design of integrated guidance and control in space with multiple constraints of rolling naval gun guided projectile

  • JIANG Shang ,
  • TIAN Fuqing ,
  • SUN Shiyan ,
  • LIANG Weige
Expand
  • Institute of Weapons Engineering, Naval University of Engineering, Wuhan 430033, China

Received date: 2019-04-19

  Revised date: 2019-06-14

  Online published: 2019-07-15

Supported by

Naval Weapons and Equipment Pre-Research Project (3020801010105)

摘要

在大口径舰炮制导炮弹打击近岸机动目标的末段,考虑攻击角、控制受限、视线(LOS)角速率测量受限等约束,提出了一种基于块动态面与扩张状态观测器(BDSESO)的多约束空间导引与控制一体化设计(IGC)方法。构建了滚转制导炮弹的空间导引与控制一体化的严块反馈串级模型,运用扩张状态观测器估计视线角速率和目标机动、建模误差、风等系统内外不确定干扰。为了在有限时间内零化视线角跟踪误差与视线角速率,采用自适应指数趋近律设计非奇异终端滑模,通过自适应动态面控制有效镇定串级系统并避免微分膨胀,引入自适应Nussbaum增益函数补偿控制受限的饱和非线性。通过Lyapunov理论证明了视线角跟踪误差、视线角速率的有限时间收敛性与全系统状态的一致最终有界性。半实物仿真实验表明:该方法使制导炮弹在打击具有不同机动形式的目标时,均具备较好的末制导性能。

本文引用格式

姜尚 , 田福庆 , 孙世岩 , 梁伟阁 . 滚转舰炮制导炮弹的空间多约束导引与控制一体化设计[J]. 航空学报, 2019 , 40(10) : 323101 -323101 . DOI: 10.7527/S1000-6893.2019.23101

Abstract

In the terminal guidance section of large caliber naval gun networked guided projectiles while striking near shore maneuver target, an Integrated Guidance and Control (IGC) method in space based on Block Dynamic Surface and Extended States Observer (BDSESO) is proposed with multiple constraints, including impact angle, control limitation, and measurement Line of Sight (LOS) rate limitation. The strict block feedback cascade model of rolling guided projectile IGC in space is constructed, and the ESO is used to estimate LOS rate and uncertain disturbances inside and outside the system such as target maneuvering, model error, and wind. Aiming at zeroing the LOS angle tracking error and LOS rate in finite time, a nonsingular terminal sliding mode is designed with the adaptive exponential reaching law. The adaptive dynamic surface control is adopted to effectively stabilize the cascade system and to avoid differential explosion. And in order to compensate the saturated nonlinearity of control constraints, the adaptive Nussbaum gain function is introduced. The LOS angle tracking error and LOS rate are finite time convergent and the whole system states are uniformly and ultimately bounded, which are proved by Lyapunov theory. A hardware-in-the-loop simulation experiment shows this method has good guidance performance in the guided projectile process while striking targets with different maneuvering forms.

参考文献

[1] 邱志明, 孙世岩, 易善勇, 等. 舰炮武器系统技术发展趋势研究[J]. 舰船科学与技术, 2008, 30(2):21-26. QIU Z M, SUN S Y, YI S Y, et al. Research on development of shipboard gun weapon system technology[J]. Ship Science & Technology, 2008, 30(2):21-26(in Chinese).
[2] 孙世岩, 朱惠民, 宋歆, 等. 舰炮制导炮弹发展研究[J]. 火力控制与指挥, 2016, 41(12):1-4. SUN S Y, ZHU H M, SONG X, et al. Study of developing naval gun guided ammunition[J]. Fire Control & Command Control, 2016, 41(12):1-4(in Chinese).
[3] RAN M P, WANG Q, HOU D L, et al. Backstepping design of missile guidance and control based on adaptive fuzzy sliding mode control[J]. Chinese Journal of Aeronautics, 2014, 27(3):634-642.
[4] 姜尚, 田福庆, 孙世岩, 等. 考虑自动驾驶仪动态特性与攻击角约束的模糊自适应动态面末制导律[J]. 系统工程与电子技术, 2019, 41(2):389-401. JIANG S, TIAN F Q, SUN S Y, et al. Fuzzy adaptive dynamic surface terminal guidance law considering autopilot and impact angle constraints[J]. System Engineering & Electronics, 2019, 41(2):389-401(in Chinese).
[5] WILLIAMS D, RICHMAN J, FRIEDLAND B. Design of an integrated strapdown guidance and control system for a tactical missile[C]//Proceedings of AIAA Guidance and Control Conference. Reston, VA:AIAA, 1983:57-66.
[6] VADDI S, MENON P K, OHLMEYER E J. Numerical state-dependent Riccati equation approach for missile integrated guidance control[J]. Journal of Guidance Control and Dynamics, 2012, 32(2):699-703.
[7] 杨靖, 王旭刚, 王中原, 等. 基于滑模观测器的鲁棒变结构一体化导引控制律[J]. 兵工学报, 2017, 38(2):246-253. YANG J, WANG X G, WANG Z Y, et al. Sliding-mode-observer-based robust variable structure control for integrated autopilot-guidance[J]. Acta Armamentarii, 2017, 38(2):246-253(in Chinese).
[8] WEN C Y, ZHOU J, LIU Z T, et al. Robust adaptive control of uncertain nonlinear systems in the presence of input saturation and external disturbance[J]. IEEE Transactions on Automatic Control, 2011, 56(7):1672-1678.
[9] 周觐, 雷虎民, 李炯, 等. 基于神经网络的导弹制导控制一体化反演设计[J]. 航空学报, 2015, 36(5):1661-1672. ZHOU J, LEI H M, LI J, et al. Integrated missile guidance and control design based on neural network and back-stepping control theory[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(5):1661-1672(in Chinese).
[10] 张尧, 郭杰, 唐胜景, 等. 导弹制导与控制一体化三通道解耦设计方法[J]. 航空学报, 2014, 35(12):3438-3450. ZHANG Y, GUO J, TANG S J, et al. Integrated missile guidance and control three-channel decoupling design method[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(12):3438-3450(in Chinese).
[11] SHTESSEL Y B, TOURNES C H. Integrated higher-order sliding mode guidance and autopilot for dual-control missiles[J]. Journal of Guidance Control Dynamics, 2012, 32(1):79-94.
[12] WU P, YANG M. Adaptive integrated guidance and control design for missile with terminal impact angle constraint based on sliding mode control[J]. Journal of Systems Engineering and Electronics, 2010, 21(4):623-628.
[13] KUMAR S R, RAO S, GHOSE D. Nonsingular terminal sliding mode guidance with impact angle constraints[J]. Journal of Guidance Control and Dynamics, 2014, 37(4):1114-1130.
[14] GUO C, LIANG X G. Integrated guidance and control based on block backstepping sliding mode and dynamic control allocation[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2015, 229(9):1559-1574.
[15] HAN J Q. From PID to active disturbance rejection control[J]. IEEE Transactions on Industrial Electronics, 2009, 56(3):900-906.
[16] ZHU Z, XU D, LIU J M, et al. Missile guidance law based on extended state observer[J]. IEEE Transactions on Industrial Electronics, 2013, 60(12):5882-5891.
[17] 韩子鹏. 弹箭外弹道学[M]. 北京:北京理工大学出版社, 2014:467-472. HAN Z P. Exterior ballistics of projectiles and rockets[M]. Beijing:Beijing Institute of Technology Press, 2014:467-472(in Chinese).
[18] FENG Y, YU X H, MAN Z H. Non-singular terminal sliding mode control of rigid manipulators[J]. Automatica, 2002, 38:2159-2167.
[19] NUSSBAUM R D. Some remarks on a conjecture in parameter adaptive control[J]. Systems and Control Letters, 1983, 3(5):243-246.
[20] HOU Z, DUAN G R. Adaptive dynamic surface control for integrated missile guidance and autopilot[J]. International Journal of Automation and Computing, 2011, 8(1):122-127.
[21] LI T S, LI Y M. Direct adaptive fuzzy back-stepping control of uncertain nonlinear systems in the presence of input saturation[J]. Neural Computing and Applications, 2013, 23(5):1207-1216.
[22] YAMASAKI T, BALARISHNAN S N, TAKANO H, et al. Second order sliding mode-based intercept guidance with uncertainty and disturbance compensation[J]. AIAA Guidance, Navigation and Control, 2013, 39(5):1-17.
文章导航

/