固体力学与飞行器总体设计

嫦娥探测器分段渐倾转移机构设计

  • 马超 ,
  • 孙京 ,
  • 刘宾 ,
  • 李新立 ,
  • 张大伟 ,
  • 姜生元 ,
  • 季节
展开
  • 1. 北京空间飞行器总体设计部 空间智能机器人系统技术与应用北京市重点实验室, 北京 100094;
    2. 哈尔滨工业大学 机器人技术与系统国家重点实验室, 哈尔滨 150080

收稿日期: 2019-03-19

  修回日期: 2019-04-04

  网络出版日期: 2019-07-15

基金资助

国家"973"计划(2013CB733000);国家自然科学基金(11772102)

Design of rover transfer mechanism for Chang'e probe

  • MA Chao ,
  • SUN Jing ,
  • LIU Bin ,
  • LI Xinli ,
  • ZHANG Dawei ,
  • JIANG Shengyuan ,
  • JI Jie
Expand
  • 1. Beijing Key Laboratory of Intelligent Space Robotic Systems Technology and Applications, Beijing Institute of Spacecraft System Engineering, Beijing 100094, China;
    2. State Key Laboratory for Robotics and System, Harbin Institute of Technology, Harbin 150080, China

Received date: 2019-03-19

  Revised date: 2019-04-04

  Online published: 2019-07-15

Supported by

National Basic Research Program of China (2013CB733000);National Natural Science Foundation of China (11772102)

摘要

巡视探测器转移机构是在地外空间环境执行巡视探测器转移释放任务的空间机构。与美国、苏联转移任务不同,中国探月工程(CLEP)二期着陆器采用腿式着陆缓冲机构及巡视器顶部搭载方式,转移任务沿着陆器周向展开距离及巡视器释放高度增加,转移难度增大。在设计阶段,转移机构是否符合探测任务严苛的工程约束及设计指标;在执行阶段,转移机构能否在月面非确知环境下正常展开、转移过程是否稳定可靠,是嫦娥探测器顺利完成探测任务的关键。为保障月球后续任务及火星探测任务中转移机构的设计需要,根据巡视器转移系统特点,以探月二期工程中首次探索并成功自主设计定型的嫦娥分段渐倾转移机构为例,对巡视器转移系统的组成、任务需求及设计约束予以阐述,并结合参研人员经验,对机构研制方案的选取、关键环节设计、工程状态及任务验证情况进行说明,以为后续工作及相关工程提供参考。

本文引用格式

马超 , 孙京 , 刘宾 , 李新立 , 张大伟 , 姜生元 , 季节 . 嫦娥探测器分段渐倾转移机构设计[J]. 航空学报, 2019 , 40(10) : 223014 -223014 . DOI: 10.7527/S1000-6893.2019.23014

Abstract

The rover transfer mechanism is a space mechanism that transfers and releases the rover in the extraterrestrial space environment. Different from the former transfer tasks of the United States and the Soviet Union, in the second phase of the China's Lunar Exploration Project (CLEP), the landing-leg buffer mechanism is used for the lander of the incorporates spacecraft and the rover is mounted on top of the lander. The transfer distance of the rover along the circumferential direction of the lander and the release height of the rover dramatically increase the difficulty of the transfer task. The keys to the completion of the exploration mission include the transfer mechanism meeting the strict engineering constraints and design indexes of the mission in the design phase and high reliability of transferring the rover in the uncertain lunar surface environment in the execution phase. This paper provides the research and design processes of the Chang'e transfer mechanism in the second stage mission of the CLEP. Based on the characteristics of the rover transfer system of the Chang'e probe, the compositions, requirements, and constraints of the design are introduced. In addition, drawing on the experience of the participants, the proposal selections, key design points, engineering status, and verifications of the transfer mechanism are described, providing reference and support for associated projects in the following Lunar and Mars exploration missions.

参考文献

[1] 欧阳自远. 嫦娥一号卫星的初步科学成果与嫦娥二号卫星的使命[J]. 航天器工程, 2010, 19(5):1-6. OUYANG Z Y. Science results of Chang'e-1 lunar orbiter and mission goals of Chang'e-2[J]. Spacecraft Engineering, 2010, 19(5):1-6(in Chinese).
[2] 叶培建, 孙泽洲, 张熇, 等. 嫦娥四号探测器系统任务设计[J]. 中国科学:技术科学,2019,49(2):124-137. YE P J, SUN Z Z, ZHANG H, et al. Mission design of Chang'e-4 probe system[J]. Scientia Sinica Technologica, 2019, 49(2):124-137(in Chinese).
[3] 叶培建, 黄江川, 孙泽洲, 等. 中国月球探测器发展历程和经验初探[J]. 中国科学:技术科学, 2014, 44(6):543-558. YE P J, HUANG J C, SUN Z Z, et al. The process and experience in the development of Chinese lunar probe[J]. Scientia Sinica Technologica, 2014, 44(6):543-558(in Chinese).
[4] 叶培建, 邹乐洋, 王大轶, 等. 中国深空探测领域发展及展望[J]. 国际太空, 2018(10):4-10. YE P J, ZOU L Y, WANG D Y, et al. Development and prospect of Chinese deep space exploration[J]. Space International, 2018(10):4-10(in Chinese).
[5] 刘宾, 李新立, 柴洪友, 等. 嫦娥三号着陆器释放与转移巡视器技术[J]. 中国科学:技术科学, 2014, 44(6):576-581. LIU B, LI X L, CHAI H Y, et al. Rover release and transfer techniques of Chang'e-3 probe's lander[J]. Scientia Sinica Technologica, 2014, 44(6):576-581(in Chinese).
[6] YANG G. Contemporary planetary robotics:An approach toward autonomous systems[M]. Berlin:Wiley-VHC, 2016:20-41.
[7] 韩鸿硕,王一然,蒋宇平,等. 国外深空探测器着陆缓冲系统的特点和应用[J]. 航天器工程, 2012, 21(6):7-24. HAN H S, WANG Y R, JIANG Y P, et al. Characterisitics and application of deep-space explorer landing impact attenuation system[J]. Spacecraft Engineering, 2012, 21(6):7-24(in Chinese).
[8] 陈哲吾, 文桂林, 卿启湘, 等. 月面巡视器转移机构方案研究[J]. 机械科学与技术, 2012, 31(11):1754-1759. CHEN Z W,WEN G L,QING Q X, et al. Research of the transport mechanism for the Lunar rover[J]. Mechanical Science and Technology for Aerospace Engineering, 2012, 31(11):1754-1759(in Chinese).
[9] VISENTIN G, VAN W M. Robotics options for low-cost planetary missions[J]. Acta Astronautica, 2006, 59(8):750-756.
[10] WILLIAMSON M. Aiming for the moon:The engineering challenge of Apollo[J]. Engineering Science and Education Journal, 2002, 11(5):164-172.
[11] ANDERSON C, BRESINA J, GOLDEN K, et al. Autonomous rovers for Mars exploration[C]//Proceedings of the Aerospace Conference. Piscataway, NJ:IEEE Press, 2002:237-251.
[12] CARSTEN J, RANKIN A, FERGUSON D, et al. Global planning on the Mars Exploration Rovers:Software integration and surface testing[J]. Journal of Field Robotics, 2010, 26(4):337-357.
[13] GROTZINGER J P, CRISP J, VASAVADA A R, et al. Mars Science Laboratory mission and science investigation[J]. Space Science Reviews, 2012, 170(1-4):5-56.
[14] 陈烈民. 航天器结构与机构[M]. 北京:中国科学技术出版社, 2005:331-352. CHEN L M. Spacecraft structures and mechanisms[M]. Beijing:China Science & Technology Press, 2005:331-352(in Chinese).
[15] 刘宾, 李新立, 柴洪友, 等. CE-3巡视器转移机构设计:HT-20140615[R]. 北京:中国国防科学技术报告, 2014. LIU B, LI X L, CHAI H Y, et al. Design of the rover transfer mechanism for Chang'e-3 probe:HT-20140615[R]. Beijing:China Defense Science and Technology Reports, 2014(in Chinese).
[16] 柴洪友, 高峰. 航天器结构与机构[M]. 北京:人民邮电出版社, 2018:281-298. CHAI H Y, GAO F. Spacecraft structures and mechanisms[M]. Beijing:Posts & Telecom Press, 2018:281-298(in Chinese).
[17] 孙泽洲, 张廷新, 张熇, 等. 嫦娥三号探测器的技术设计与成就[J]. 中国科学:技术科学, 2014, 44(4):331-343. SUN Z Z, ZHANG T X, ZHANG H, et al. The technical design and achievements of Chang'e-3 probe[J]. Scientia Sinica Technologica, 2014, 44(4):331-343(in Chinese).
[18] 李飞, 张熇, 吴学英, 等. 月球南极着陆区关键特性分析[J]. 航天器工程, 2015, 24(1):103-110. LI F, ZHANG H, WU X Y, et al. Analysis of key characteristics of Lunar south pole for landing[J]. Spacecraft Engineering, 2015, 24(1):103-110(in Chinese).
[19] 张洪华, 梁俊, 黄翔宇, 等. 嫦娥三号自主避障软着陆控制技术[J]. 中国科学:技术科学, 2014, 44(6):559-568. ZHANG H H, LIANG J, HUANG X Y, et al. Autonomous hazard avoidance control for Chang'e-3 soft landing[J]. Scientia Sinica Technologica, 2014, 44(6):559-568(in Chinese).
[20] 杨建中, 满剑锋, 曾福明, 等. "嫦娥三号"着陆缓冲机构的研究成果及其应用[J]. 航天返回与遥感, 2014, 35(6):20-27. YANG J Z, MAN J F, ZENG F M, et al. Achievements and applications of landing gear for Chang'e-3 lander[J]. Spacecraft Recovery & Remote Sensing, 2014, 35(6):20-27(in Chinese).
[21] 孙泽洲, 张熇, 贾阳, 等. 嫦娥三号探测器地面验证技术[J]. 中国科学:技术科学, 2014, 44(4):369-376. SUN Z Z, ZHANG H, JIA Y, et al. Ground validation technologies for Chang'e-3 lunar spacecraft[J]. Scientia Sinica Technologica, 2014, 44(4):369-376(in Chinese).
文章导航

/